Quadratic distribution
Computes the pdf, cdf, value at risk and expected shortfall for the quadratic distribution given by [REMOVE_ME]\displaystylef(x)=α(x−β)2,\displaystyleF(x)=3α[(x−β)3+(β−a)3],VaRp(X)=β+[α3p−(β−a)3]1/3,ESp(X)=β+4pα{[α3p−(β−a)3]4/3−(β−a)4}[REMOVEME2]
for a≤x≤b, 0<p<1, −∞<a<∞ , the first location parameter, and −∞<a<b<∞, the second location parameter, where α=(b−a)312 and β=2a+b.
Description
Computes the pdf, cdf, value at risk and expected shortfall for the quadratic distribution given by
\displaystylef(x)=α(x−β)2,\displaystyleF(x)=3α[(x−β)3+(β−a)3],VaRp(X)=β+[α3p−(β−a)3]1/3,ESp(X)=β+4pα{[α3p−(β−a)3]4/3−(β−a)4}
for a≤x≤b, 0<p<1, −∞<a<∞ , the first location parameter, and −∞<a<b<∞, the second location parameter, where α=(b−a)312 and β=2a+b.
dquad(x, a=0, b=1, log=FALSE)
pquad(x, a=0, b=1, log.p=FALSE, lower.tail=TRUE)
varquad(p, a=0, b=1, log.p=FALSE, lower.tail=TRUE)
esquad(p, a=0, b=1)
Arguments
x
: scaler or vector of values at which the pdf or cdf needs to be computed
p
: scaler or vector of values at which the value at risk or expected shortfall needs to be computed
a
: the value of the first location parameter, can take any real value, the default is zero
b
: the value of the second location parameter, can take any real value but must be greater than a, the default is 1
log
: if TRUE then log(pdf) are returned
log.p
: if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail
: if FALSE then 1-cdf are returned and quantiles are computed for 1-p
Returns
An object of the same length as x
, giving the pdf or cdf values computed at x
or an object of the same length as p
, giving the values at risk or expected shortfall computed at p
.
References
Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, tools:::Rd_expr_doi("10.1080/03610918.2014.944658")
Author(s)
Saralees Nadarajah
Examples
x=runif(10,min=0,max=1)
dquad(x)
pquad(x)
varquad(x)
esquad(x)