quad function

Quadratic distribution

Quadratic distribution

Computes the pdf, cdf, value at risk and expected shortfall for the quadratic distribution given by [REMOVE_ME]\displaystylef(x)=α(xβ)2,\displaystyleF(x)=α3[(xβ)3+(βa)3],VaRp(X)=β+[3pα(βa)3]1/3,ESp(X)=β+α4p{[3pα(βa)3]4/3(βa)4}[REMOVEME2] \begin{array}{ll}&\displaystylef(x) = \alpha (x - \beta)^2,\\&\displaystyleF(x) = \frac {\alpha}{3} \left[ (x - \beta)^3 + (\beta - a)^3 \right],\\&\displaystyle{\rm VaR}_p (X) = \beta + \left[ \frac {3 p}{\alpha} - (\beta - a)^3 \right]^{1/3},\\&\displaystyle{\rm ES}_p (X) = \beta + \frac {\alpha}{4 p} \left\{ \left[ \frac {3 p}{\alpha} - (\beta - a)^3 \right]^{4/3} - (\beta - a)^4 \right\}\end{array} [REMOVE_ME_2]

for axba \leq x \leq b, 0<p<10 < p < 1, <a<-\infty < a < \infty , the first location parameter, and <a<b<-\infty < a < b < \infty, the second location parameter, where α=12(ba)3\alpha = \frac {12}{(b - a)^3} and β=a+b2\beta = \frac {a + b}{2}.

Description

Computes the pdf, cdf, value at risk and expected shortfall for the quadratic distribution given by

\displaystylef(x)=α(xβ)2,\displaystyleF(x)=α3[(xβ)3+(βa)3],VaRp(X)=β+[3pα(βa)3]1/3,ESp(X)=β+α4p{[3pα(βa)3]4/3(βa)4} \begin{array}{ll}&\displaystylef(x) = \alpha (x - \beta)^2,\\&\displaystyleF(x) = \frac {\alpha}{3} \left[ (x - \beta)^3 + (\beta - a)^3 \right],\\&\displaystyle{\rm VaR}_p (X) = \beta + \left[ \frac {3 p}{\alpha} - (\beta - a)^3 \right]^{1/3},\\&\displaystyle{\rm ES}_p (X) = \beta + \frac {\alpha}{4 p} \left\{ \left[ \frac {3 p}{\alpha} - (\beta - a)^3 \right]^{4/3} - (\beta - a)^4 \right\}\end{array}

for axba \leq x \leq b, 0<p<10 < p < 1, <a<-\infty < a < \infty , the first location parameter, and <a<b<-\infty < a < b < \infty, the second location parameter, where α=12(ba)3\alpha = \frac {12}{(b - a)^3} and β=a+b2\beta = \frac {a + b}{2}.

dquad(x, a=0, b=1, log=FALSE) pquad(x, a=0, b=1, log.p=FALSE, lower.tail=TRUE) varquad(p, a=0, b=1, log.p=FALSE, lower.tail=TRUE) esquad(p, a=0, b=1)

Arguments

  • x: scaler or vector of values at which the pdf or cdf needs to be computed
  • p: scaler or vector of values at which the value at risk or expected shortfall needs to be computed
  • a: the value of the first location parameter, can take any real value, the default is zero
  • b: the value of the second location parameter, can take any real value but must be greater than a, the default is 1
  • log: if TRUE then log(pdf) are returned
  • log.p: if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
  • lower.tail: if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Returns

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, tools:::Rd_expr_doi("10.1080/03610918.2014.944658")

Author(s)

Saralees Nadarajah

Examples

x=runif(10,min=0,max=1) dquad(x) pquad(x) varquad(x) esquad(x)
  • Maintainer: Leo Belzile
  • License: GPL (>= 2)
  • Last published: 2023-04-22

Useful links