secant function

Hyperbolic secant distribution

Hyperbolic secant distribution

Computes the pdf, cdf, value at risk and expected shortfall for the hyperbolic secant distribution given by [REMOVE_ME]\displaystylef(x)=12sech(πx2),\displaystyleF(x)=2πarctan[exp(πx2)],VaRp(X)=2πlog[tan(πp2)],ESp(X)=2πp0plog[tan(πv2)]dv[REMOVEME2] \begin{array}{ll}&\displaystylef (x) = \frac {1}{2} {\rm sech} \left( \frac {\pi x}{2} \right),\\&\displaystyleF (x) = \frac {2}{\pi} \arctan \left[ \exp \left( \frac {\pi x}{2} \right) \right],\\&\displaystyle{\rm VaR}_p (X) = \frac {2}{\pi} \log \left[ \tan \left( \frac {\pi p}{2} \right) \right],\\&\displaystyle{\rm ES}_p (X) = \frac {2}{\pi p} \int_0^p \log \left[ \tan \left( \frac {\pi v}{2} \right) \right] dv\end{array} [REMOVE_ME_2]

for <x<-\infty < x < \infty, and 0<p<10 < p < 1.

Description

Computes the pdf, cdf, value at risk and expected shortfall for the hyperbolic secant distribution given by

\displaystylef(x)=12sech(πx2),\displaystyleF(x)=2πarctan[exp(πx2)],VaRp(X)=2πlog[tan(πp2)],ESp(X)=2πp0plog[tan(πv2)]dv \begin{array}{ll}&\displaystylef (x) = \frac {1}{2} {\rm sech} \left( \frac {\pi x}{2} \right),\\&\displaystyleF (x) = \frac {2}{\pi} \arctan \left[ \exp \left( \frac {\pi x}{2} \right) \right],\\&\displaystyle{\rm VaR}_p (X) = \frac {2}{\pi} \log \left[ \tan \left( \frac {\pi p}{2} \right) \right],\\&\displaystyle{\rm ES}_p (X) = \frac {2}{\pi p} \int_0^p \log \left[ \tan \left( \frac {\pi v}{2} \right) \right] dv\end{array}

for <x<-\infty < x < \infty, and 0<p<10 < p < 1.

dsecant(x, log=FALSE) psecant(x, log.p=FALSE, lower.tail=TRUE) varsecant(p, log.p=FALSE, lower.tail=TRUE) essecant(p)

Arguments

  • x: scaler or vector of values at which the pdf or cdf needs to be computed
  • p: scaler or vector of values at which the value at risk or expected shortfall needs to be computed
  • log: if TRUE then log(pdf) are returned
  • log.p: if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
  • lower.tail: if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Returns

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, tools:::Rd_expr_doi("10.1080/03610918.2014.944658")

Author(s)

Saralees Nadarajah

Examples

x=runif(10,min=0,max=1) dsecant(x) psecant(x) varsecant(x) essecant(x)
  • Maintainer: Leo Belzile
  • License: GPL (>= 2)
  • Last published: 2023-04-22

Useful links