staceygamma function

Stacy distribution

Stacy distribution

Computes the pdf, cdf, value at risk and expected shortfall for Stacy distribution due to Stacy (1962) given by [REMOVE_ME]\displaystylef(x)=cxcγ1exp[(x/θ)c]θcγΓ(γ),\displaystyleF(x)=1Q(γ,(xθ)c),VaRp(X)=θ[Q1(γ,1p)]1/c,ESp(X)=θp0p[Q1(γ,1v)]1/cdv[REMOVEME2] \begin{array}{ll}&\displaystylef (x) = \frac {c x^{c \gamma - 1} \exp \left[ -(x / \theta)^c \right]}{\theta^{c \gamma} \Gamma (\gamma)},\\&\displaystyleF (x) = 1 - Q \left( \gamma, \left( \frac {x}{\theta} \right)^c \right),\\&\displaystyle{\rm VaR}_p (X) = \theta \left[ Q^{-1} (\gamma, 1 - p) \right]^{1 / c},\\&\displaystyle{\rm ES}_p (X) = \frac {\theta}{p} \int_0^p \left[ Q^{-1} (\gamma, 1 - v) \right]^{1 / c} dv\end{array} [REMOVE_ME_2]

for x>0x > 0, 0<p<10 < p < 1, θ>0\theta > 0, the scale parameter, c>0c > 0, the first shape parameter, and γ>0\gamma > 0, the second shape parameter.

Description

Computes the pdf, cdf, value at risk and expected shortfall for Stacy distribution due to Stacy (1962) given by

\displaystylef(x)=cxcγ1exp[(x/θ)c]θcγΓ(γ),\displaystyleF(x)=1Q(γ,(xθ)c),VaRp(X)=θ[Q1(γ,1p)]1/c,ESp(X)=θp0p[Q1(γ,1v)]1/cdv \begin{array}{ll}&\displaystylef (x) = \frac {c x^{c \gamma - 1} \exp \left[ -(x / \theta)^c \right]}{\theta^{c \gamma} \Gamma (\gamma)},\\&\displaystyleF (x) = 1 - Q \left( \gamma, \left( \frac {x}{\theta} \right)^c \right),\\&\displaystyle{\rm VaR}_p (X) = \theta \left[ Q^{-1} (\gamma, 1 - p) \right]^{1 / c},\\&\displaystyle{\rm ES}_p (X) = \frac {\theta}{p} \int_0^p \left[ Q^{-1} (\gamma, 1 - v) \right]^{1 / c} dv\end{array}

for x>0x > 0, 0<p<10 < p < 1, θ>0\theta > 0, the scale parameter, c>0c > 0, the first shape parameter, and γ>0\gamma > 0, the second shape parameter.

dstacygamma(x, gamma=1, c=1, theta=1, log=FALSE) pstacygamma(x, gamma=1, c=1, theta=1, log.p=FALSE, lower.tail=TRUE) varstacygamma(p, gamma=1, c=1, theta=1, log.p=FALSE, lower.tail=TRUE) esstacygamma(p, gamma=1, c=1, theta=1)

Arguments

  • x: scaler or vector of values at which the pdf or cdf needs to be computed
  • p: scaler or vector of values at which the value at risk or expected shortfall needs to be computed
  • theta: the value of the scale parameter, must be positive, the default is 1
  • c: the value of the first scale parameter, must be positive, the default is 1
  • gamma: the value of the second scale parameter, must be positive, the default is 1
  • log: if TRUE then log(pdf) are returned
  • log.p: if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
  • lower.tail: if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Returns

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, tools:::Rd_expr_doi("10.1080/03610918.2014.944658")

Author(s)

Saralees Nadarajah

Examples

x=runif(10,min=0,max=1) dstacygamma(x) pstacygamma(x) varstacygamma(x) esstacygamma(x)
  • Maintainer: Leo Belzile
  • License: GPL (>= 2)
  • Last published: 2023-04-22

Useful links