tau: numeric vector of quantiles to plot, defaults to all in object if not supplied
predicted: logical indicating if standard predicted values are plotted, default TRUE, otherwise normalized predictions are plotted
annuals: logical indicating if plots are annual aggregations of results
logspace: logical indicating if plots are in log space
dt_rng: Optional chr string indicating the date range of the plot. Must be two values in the format 'YYYY-mm-dd' which is passed to as.Date.
col_vec: chr string of plot colors to use, passed to gradcols. Any color palette from RColorBrewer can be used as a named input. Palettes from grDevices must be supplied as the returned string of colors for each palette.
grids: logical indicating if grid lines are present
min_mo: numeric value from one to twelve indicating the minimum number of months with observations for averaging by years, applies only if annuals = TRUE. See annual_agg.
mo_strt: numeric indicating month to start aggregation years, defaults to October for USGS water year from October to September, applies only if annuals = TRUE. See annual_agg.
pretty: logical indicating if my subjective idea of plot aesthetics is applied, otherwise the ggplot default themes are used
lwd: numeric value indicating width of lines
size: numeric value indicating size of points
alpha: numeric value indicating transparency of points or lines
Returns
A ggplot object that can be further modified
Examples
## load a fitted tidal objectdata(tidfit)# plot using defaultsfitplot(tidfit)# get the same plot but use default ggplot settingsfitplot(tidfit, pretty =FALSE)# plot in log spacefitplot(tidfit, logspace =TRUE)# plot specific quantilesfitplot(tidfit, tau = c(0.1,0.9))# plot the normalized predictionsfitplot(tidfit, predicted =FALSE)# plot as monthly valuesfitplot(tidfit, annuals =FALSE)# format the x-axis is using annual aggregationslibrary(ggplot2)fitplot(tidfit, annual =TRUE)+ scale_x_date(limits = as.Date(c('2000-01-01','2012-01-01')))# modify the plot as needed using ggplot scales, etc.fitplot(tidfit, pretty =FALSE, linetype ='dashed')+ theme_classic()+ scale_y_continuous('Chlorophyll', limits = c(0,50))+ scale_colour_manual('Predictions', labels = c('lo','md','hi'), values = c('red','green','blue'), guide = guide_legend(reverse =TRUE))# plot a tidalmean objectdata(tidfitmean)fitplot(tidfitmean)