WaverideR0.3.2 package

Extracting Signals from Wavelet Spectra

add_wavelet

Add a wavelet plot

add_wavelet_avg

Add a plot of a the average spectral power of a continous wavelet tran...

analyze_wavelet

Conduct the continuous wavelet transform on a time series/signal

anchor2time

Convert a proxy record to the time domain using anchor points

astro_anchor

Anchor proxy record to an astronomical solution

completed_series

Complete the tracking of cycle in a wavelet spectra

curve2sedrate

Convert a tracked tracked to a sedimentation rate curve

curve2time

Convert the tracked curve to a depth time space

curve2time_unc

Convert the re-tracked curve results to a depth time space with uncert...

curve2time_unc_anchor

Anchor an age model including its uncertainty to a single radiometric ...

curve2tune

Convert data from the depth to the time domain

delpts_tracked_period_wt

Remove tracking points which were tracked in a wavelet spectra

dur_gaps

calculate the duration of stratigraphic gaps using astronomical cycles

extract_amplitude

Extract amplitude from a signal

extract_power

Extract power from a wavelet spectra

extract_power_stable

Extract power from a wavelet spectra by using a constant period/durati...

extract_signal

Extract signal from a wavelet spectra using a traced period curve

extract_signal_stable

Extract a signal/cycle from a wavelet spectra using a set period and b...

extract_signal_stable_V2

Extract signal from a wavelet spectrum using a upper and lower period ...

extract_signal_standard_deviation

Extract a signal using standard deviation

flmw

Fit linear models to spectral peaks extracted from the wavelet spectra...

geo_col

Generate standard color codes for the Geological Time Scale

geo_loc

Generates ages for the boundaries of a geochronological subdivision

geo_mid

Generate the mean age of a geological subdivision

Hilbert_transform

Perform a Hilbert transform on a signal

lithlog_disc

Discriticizes lithologs

loess_auto

Perform an automatically loess based smoothing of a time series

max_detect

Detect and filter out all maxima in a signal

min_detect

Detect and filter out all minima in a signal

minimal_tuning

Create an age model using minimal tuning

model_red_noise_wt

Models average spectral power based curves based on a red-noise signal...

percentile_from_red_noise

Calculate average spectral power from red noise curves for a given per...

plot_astro_anchor

Plot proxy record anchored to an astronomical solution

plot_avg_wavelet

Plot the average spectral power of a wavelet spectra

plot_sed_model

Plot sedimentation modelling results

plot_wavelet

Plots a wavelet power spectra

plot_win_fft

Plot windowed fft based spectral analysis results

retrack_wt_MC

Re-track cycles using a Monte-Carlo simulation

sedrate2tune

Use a sedimentation curve to convert data to the time domain

sum_power_sedrate

Calculate sum of maximum spectral power for sedimentation rates for a ...

track_period_wavelet

Track the period of a cycle in a wavelet spectra

wavelet_uncertainty

Calculate the uncertainty associated with the wavelet analysis based o...

WaverideR

Extracting Signals from Wavelet Spectra

WaverideR_Datasets

Example data sets for the 'WaverideR' package

win_fft

Windowed fft based spectral analysis

The continuous wavelet transform enables the observation of transient/non-stationary cyclicity in time-series. The goal of cyclostratigraphic studies is to define frequency/period in the depth/time domain. By conducting the continuous wavelet transform on cyclostratigraphic data series one can observe and extract cyclic signals/signatures from signals. These results can then be visualized and interpreted enabling one to identify/interpret cyclicity in the geological record, which can be used to construct astrochronological age-models and identify and interpret cyclicity in past and present climate systems. The 'WaverideR' R package builds upon existing literature and existing codebase. The list of articles which are relevant can be grouped in four subjects; cyclostratigraphic data analysis,example data sets,the (continuous) wavelet transform and astronomical solutions. References for the cyclostratigraphic data analysis articles are: Stephen Meyers (2019) <doi:10.1016/j.earscirev.2018.11.015>. Mingsong Li, Linda Hinnov, Lee Kump (2019) <doi:10.1016/j.cageo.2019.02.011> Stephen Meyers (2012)<doi:10.1029/2012PA002307> Mingsong Li, Lee R. Kump, Linda A. Hinnov, Michael E. Mann (2018) <doi:10.1016/j.epsl.2018.08.041>. Wouters, S., Crucifix, M., Sinnesael, M., Da Silva, A.C., Zeeden, C., Zivanovic, M., Boulvain, F., Devleeschouwer, X. (2022) <doi:10.1016/j.earscirev.2021.103894>. Wouters, S., Da Silva, A.-C., Boulvain, F., and Devleeschouwer, X. (2021) <doi:10.32614/RJ-2021-039>. Huang, Norden E., Zhaohua Wu, Steven R. Long, Kenneth C. Arnold, Xianyao Chen, and Karin Blank (2009) <doi:10.1142/S1793536909000096>. Cleveland, W. S. (1979)<doi:10.1080/01621459.1979.10481038> Hurvich, C.M., Simonoff, J.S., and Tsai, C.L. (1998) <doi:10.1111/1467-9868.00125>, Golub, G., Heath, M. and Wahba, G. (1979) <doi:10.2307/1268518>. References for the example data articles are: Damien Pas, Linda Hinnov, James E. (Jed) Day, Kenneth Kodama, Matthias Sinnesael, Wei Liu (2018) <doi:10.1016/j.epsl.2018.02.010>. Steinhilber, Friedhelm, Abreu, Jacksiel, Beer, Juerg , Brunner, Irene, Christl, Marcus, Fischer, Hubertus, HeikkilA, U., Kubik, Peter, Mann, Mathias, Mccracken, K. , Miller, Heinrich, Miyahara, Hiroko, Oerter, Hans , Wilhelms, Frank. (2012 <doi:10.1073/pnas.1118965109>. Christian Zeeden, Frederik Hilgen, Thomas Westerhold, Lucas Lourens, Ursula Röhl, Torsten Bickert (2013) <doi:10.1016/j.palaeo.2012.11.009>. References for the (continuous) wavelet transform articles are: Morlet, Jean, Georges Arens, Eliane Fourgeau, and Dominique Glard (1982a) <doi:10.1190/1.1441328>. J. Morlet, G. Arens, E. Fourgeau, D. Giard (1982b) <doi:10.1190/1.1441329>. Torrence, C., and G. P. Compo (1998)<https://paos.colorado.edu/research/wavelets/bams_79_01_0061.pdf>, Gouhier TC, Grinsted A, Simko V (2021) <https://github.com/tgouhier/biwavelet>. Angi Roesch and Harald Schmidbauer (2018) <https://CRAN.R-project.org/package=WaveletComp>. Russell, Brian, and Jiajun Han (2016)<https://www.crewes.org/Documents/ResearchReports/2016/CRR201668.pdf>. Gabor, Dennis (1946) <http://genesis.eecg.toronto.edu/gabor1946.pdf>. J. Laskar, P. Robutel, F. Joutel, M. Gastineau, A.C.M. Correia, and B. Levrard, B. (2004) <doi:10.1051/0004-6361:20041335>. Laskar, J., Fienga, A., Gastineau, M., Manche, H. (2011a) <doi:10.1051/0004-6361/201116836>. References for the astronomical solutions articles are: Laskar, J., Gastineau, M., Delisle, J.-B., Farres, A., Fienga, A. (2011b <doi:10.1051/0004-6361/201117504>. J. Laskar (2019) <doi:10.1016/B978-0-12-824360-2.00004-8>. Zeebe, Richard E (2017) <doi:10.3847/1538-3881/aa8cce>. Zeebe, R. E. and Lourens, L. J. (2019) <doi:10.1016/j.epsl.2022.117595>. Richard E. Zeebe Lucas J. Lourens (2022) <doi:10.1126/science.aax0612>.