hierCredibility function

Hierarchical credibility model of Jewell

Hierarchical credibility model of Jewell

Fit a random effects model, without contract-specific risk factors, using the hierarchical credibility model of Jewell.

hierCredibility( Yijkt, wijkt, sector, group, data, muHat = NULL, type = c("additive", "multiplicative"), returnData = FALSE )

Arguments

  • Yijkt: variable name of the response variable (the loss cost within actuarial applications).
  • wijkt: variable name of the exposure weight.
  • sector: variable name of the first hierarchical level.
  • group: variable name of the second hierarchical level that is nested within the first hierarchical level.
  • data: an object that is coercible by as.data.table, containing the variables in the model.
  • muHat: estimate for the intercept term. Default is NULL and in this case, the estimator as given in Ohlsson (2005) is used.
  • type: specifies whether the additive (Dannenburg, 1996) or multiplicative (Ohlsson, 2005) formulation of the hierarchical credibility model is used. Default is additive.
  • returnData: Logical, indicates whether the data object has to be returned. Default is FALSE.

Returns

An object of type hierCredibility with the following slots:

  • call: the matched call

  • type: Whether additive or multiplicative hierarchical credibility model is used.

  • Variances: The estimated variance components. s2 is the estimated variance of the individual contracts, tausq the estimate of Var(V[j])Var(V[j]) and nusq is the estimate of Var(V[jk])Var(V[jk]).

  • Means: The estimated averages at the portfolio level (intercept term μ\mu), at the first hierarchical level (bar(Y)[%.%j%.%%.%]zbar(Y)[\%.\% j \%.\% \%.\%]^z) and at the second hierarchical level (bar(Y)[%.%jk%.%]bar(Y)[\%.\% jk \%.\%]).

  • Weights: The weights at the first hierarchical level z[j%.%]z[j\%.\%] and at the second hierarchical level w[%.%jk%.%]w[\%.\%jk\%.\%].

  • Credibility: The credibility weights at the first hierarchical level q[j%.%]q[j\%.\%] and at the second hierarchical level z[jk]z[jk].

  • Premiums: The overall expectation widehat(μ)widehat(\mu), sector expectation widehat(V)[j]widehat(V)[j] and group expectation widehat(V)[jk]widehat(V)[jk].

  • Relativity: The estimated random effects widehat(U)[j]widehat(U)[j] and widehat(U)[jk]widehat(U)[jk] of the sector and group, respectively.

  • RawResults: Objects of type data.table with all intermediate results.

  • fitted.values: the fitted mean values, resulting from the model fit.

Examples

library(actuar) library(actuaRE) data("hachemeister", package = "actuar") Df = as.data.frame(hachemeister) X = as.data.frame(cbind(cohort = c(1, 2, 1, 2, 2), hachemeister)) Df = reshape(X, idvar = "state", varying = list(paste0("ratio.", 1:12), paste0("weight.", 1:12)), direction = "long") fitActuar = cm(~ cohort + cohort:state, data = X, ratios = ratio.1:ratio.12, weights = weight.1:weight.12, method = "Ohlsson") fitActuaRE = hierCredibility(ratio.1, weight.1, cohort, state, Df) summary(fitActuar) summary(fitActuaRE)

References

Campo, B.D.C. and Antonio, Katrien (2023). Insurance pricing with hierarchically structured data an illustration with a workers' compensation insurance portfolio. Scandinavian Actuarial Journal, doi: 10.1080/03461238.2022.2161413

Dannenburg, D. R., Kaas, R. and Goovaerts, M. J. (1996). Practical actuarial credibility models. Amsterdam: IAE (Institute of Actuarial Science and Econometrics of the University of Amsterdam).

Jewell, W. S. (1975). The use of collateral data in credibility theory: a hierarchical model. Laxenburg: IIASA.

Ohlsson, E. (2005). Simplified estimation of structure parameters in hierarchical credibility. Presented at the Zurich ASTIN Colloquium.http://www.actuaries.org/ASTIN/Colloquia/Zurich/Ohlsson.pdf

See Also

hierCredibility-class, fitted.hierCredibility, predict.hierCredibility, ranef-actuaRE, weights-actuaRE, hierCredTweedie, hierCredGLM, cpglm, plotRE