pcaivortho function

Principal Component Analysis with respect to orthogonal instrumental variables

Principal Component Analysis with respect to orthogonal instrumental variables

performs a Principal Component Analysis with respect to orthogonal instrumental variables.

pcaivortho(dudi, df, scannf = TRUE, nf = 2) ## S3 method for class 'pcaivortho' summary(object, ...)

Arguments

  • dudi: a duality diagram, object of class dudi
  • df: a data frame with the same rows
  • scannf: a logical value indicating whether the eigenvalues bar plot should be displayed
  • nf: if scannf FALSE, an integer indicating the number of kept axes
  • object: an object of class pcaiv
  • ...: further arguments passed to or from other methods

Returns

an object of class 'pcaivortho' sub-class of class dudi

  • rank: an integer indicating the rank of the studied matrix

  • nf: an integer indicating the number of kept axes

  • eig: a vector with the all eigenvalues

  • lw: a numeric vector with the row weigths (from dudi)

  • cw: a numeric vector with the column weigths (from dudi)

  • Y: a data frame with the dependant variables

  • X: a data frame with the explanatory variables

  • tab: a data frame with the modified array (projected variables)

  • c1: a data frame with the Pseudo Principal Axes (PPA)

  • as: a data frame with the Principal axis of dudi$tab on PAP

  • ls: a data frame with the projection of lines of dudi$tab on PPA

  • li: a data frame dudi$ls with the predicted values by X

  • l1: a data frame with the Constraint Principal Components (CPC)

  • co: a data frame with the inner product between the CPC and Y

  • param: a data frame containing a summary

Author(s)

Daniel Chessel

Anne-Béatrice Dufour anne-beatrice.dufour@univ-lyon1.fr

Stéphane Dray stephane.dray@univ-lyon1.fr

References

Rao, C. R. (1964) The use and interpretation of principal component analysis in applied research. Sankhya, A 26 , 329--359.

Sabatier, R., Lebreton J. D. and Chessel D. (1989) Principal component analysis with instrumental variables as a tool for modelling composition data. In R. Coppi and S. Bolasco, editors. Multiway data analysis, Elsevier Science Publishers B.V., North-Holland, 341--352

Examples

## Not run: data(avimedi) cla <- avimedi$plan$reg:avimedi$plan$str # simple ordination coa1 <- dudi.coa(avimedi$fau, scan = FALSE, nf = 3) # within region w1 <- wca(coa1, avimedi$plan$reg, scan = FALSE) # no region the same result pcaivnonA <- pcaivortho(coa1, avimedi$plan$reg, scan = FALSE) summary(pcaivnonA) # region + strate interAplusB <- pcaiv(coa1, avimedi$plan, scan = FALSE) if(adegraphicsLoaded()) { g1 <- s.class(coa1$li, cla, psub.text = "Sans contrainte", plot = FALSE) g21 <- s.match(w1$li, w1$ls, plab.cex = 0, psub.text = "Intra Région", plot = FALSE) g22 <- s.class(w1$li, cla, plot = FALSE) g2 <- superpose(g21, g22) g31 <- s.match(pcaivnonA$li, pcaivnonA$ls, plab.cex = 0, psub.tex = "Contrainte Non A", plot = FALSE) g32 <- s.class(pcaivnonA$li, cla, plot = FALSE) g3 <- superpose(g31, g32) g41 <- s.match(interAplusB$li, interAplusB$ls, plab.cex = 0, psub.text = "Contrainte A + B", plot = FALSE) g42 <- s.class(interAplusB$li, cla, plot = FALSE) g4 <- superpose(g41, g42) G <- ADEgS(list(g1, g2, g3, g4), layout = c(2, 2)) } else { par(mfrow = c(2, 2)) s.class(coa1$li, cla, sub = "Sans contrainte") s.match(w1$li, w1$ls, clab = 0, sub = "Intra Région") s.class(w1$li, cla, add.plot = TRUE) s.match(pcaivnonA$li, pcaivnonA$ls, clab = 0, sub = "Contrainte Non A") s.class(pcaivnonA$li, cla, add.plot = TRUE) s.match(interAplusB$li, interAplusB$ls, clab = 0, sub = "Contrainte A + B") s.class(interAplusB$li, cla, add.plot = TRUE) par(mfrow = c(1,1)) } ## End(Not run)
  • Maintainer: Aurélie Siberchicot
  • License: GPL (>= 2)
  • Last published: 2025-02-14