Generate an initial semi-random start for the (low dimensional) Additive Profile Clustering algorithm (see adproclus and adproclus_low_dim).
get_semirandom(data, nclusters, seed =NULL)
Arguments
data: Object-by-variable data matrix of class matrix or data.frame.
nclusters: Number of clusters to be used. Must be a positive integer.
seed: Integer. Seed for the random number generator. Default: NULL
Returns
get_semirandom returns a list with the following components:
type: A character string denoting the type of start ('Semi-random Start')
A: An initial Membership matrix
Details
An initial cluster membership matrix A is generated by finding the best A conditional on an initial profile matrix P generated by drawing k randomly chosen, distinct, rows from data (for details, see Depril et al., 2012).
Warning: This function does not obtain an ADPRCOLUS model. To perform aditive profile clustering, see adproclus.
Examples
# Obtain data from data set "Stackloss" and generate start allocationstart_allocation <- get_semirandom(stackloss,3)$A
References
Wilderjans, T. F., Ceulemans, E., Van Mechelen, I., & Depril, D. (2010). ADPROCLUS: a graphical user interface for fitting additive profile clustering models to object by variable data matrices. Behavior Research Methods, 43(1), 56-65.
Depril, D., Van Mechelen, I., & Mirkin, B. (2008). Algorithms for additive clustering of rectangular data tables. Computational Statistics and Data Analysis, 52, 4923-4938.
#' Depril, D., Van Mechelen, I., & Wilderjans, T. F. (2012). Lowdimensional additive overlapping clustering. Journal of classification, 29, 297-320.
See Also
adproclus, adproclus_low_dim: for details about membership and profile matrices