aout.laplace function

Find α\alpha-outliers in Laplace / double exponential data

Find α\alpha-outliers in Laplace / double exponential data

Given the parameters of a Laplace distribution, aout.laplace identifies α\alpha-outliers in a given data set.

aout.laplace(data, param, alpha = 0.1, hide.outliers = FALSE)

Arguments

  • data: a vector. The data set to be examined.
  • param: a vector. Contains the parameters of the Laplace distribution: μ,σ\mu, \sigma.
  • alpha: an atomic vector. Determines the maximum amount of probability mass the outlier region may contain. Defaults to 0.1.
  • hide.outliers: boolean. Returns the outlier-free data if set to TRUE. Defaults to FALSE.

Returns

Data frame of the input data and an index named is.outlier that flags the outliers with TRUE. If hide.outliers is set to TRUE, a simple vector of the outlier-free data.

References

Dumonceaux, R.; Antle, C. E. (1973) Discrimination between the log-normal and the Weibull distributions. Technometrics, 15 (4), 923-926.

Gather, U.; Kuhnt, S.; Pawlitschko, J. (2003) Concepts of outlyingness for various data structures. In J. C. Misra (Ed.): Industrial Mathematics and Statistics. New Delhi: Narosa Publishing House, 545-585.

Author(s)

A. Rehage

Examples

# Using the flood data from Dumonceaux and Antle (1973): temp <- c(0.265, 0.269, 0.297, 0.315, 0.3225, 0.338, 0.379, 0.380, 0.392, 0.402, 0.412, 0.416, 0.418, 0.423, 0.449, 0.484, 0.494, 0.613, 0.654, 0.74) aout.laplace(temp, c(median(temp), median(abs(temp - median(temp)))), 0.05)
  • Maintainer: Andre Rehage
  • License: GPL-3
  • Last published: 2016-09-09

Useful links