mfitstab.elliptical function

mfitstab.elliptical

mfitstab.elliptical

estimates the parameters of a d-dimensional elliptically contoured stable distribution, see Teimouri et al. (2018).

mfitstab.elliptical(yy, alpha0, Sigma0, Mu0)

Arguments

  • yy: vector of d-dimensional realizations
  • alpha0: initial value of the tail index parameter to start the EM algorithm
  • Sigma0: initial value of the dispersion matrix to start the EM algorithm
  • Mu0: initial value of the location vector to start the EM algorithm

Returns

  • alpha: estimated value of the tail index parameter

  • Sigma: estimated value of the dispersion matrix

  • Mu: estimated value of the location vector

References

Teimouri, M., Rezakhah, S., and Mohammadpour, A. (2018). Parameter estimation using the EM algorithm for symmetric stable random variables and sub-Gaussian random vectors, Journal of Statistical Theory and Applications, 17(3),1-20,

Author(s)

Mahdi Teimouri, Adel Mohammadpour, and Saralees Nadarajah

Examples

# Here we follow for applying the EM algorithm to Z=(x1, x2)^T using the # initial values alpha0=1, Sigma0=matrix(c(0.75,0.25,0.25,0.75),2,2), and # Mu0=(0.5,0.5)^T. library("stabledist") x1<-urstab(100,1.2,0,1,2,0) x2<-urstab(100,1.2,0,0.5,2,0) z<-cbind(x1,x2) mfitstab.elliptical(z,1,matrix(c(0.75,0.25,0.25,0.75),2,2),c(0.5,0.5))
  • Maintainer: Mahdi Teimouri
  • License: GPL (>= 2)
  • Last published: 2019-09-10

Useful links