generates iid realizations from d-dimensional elliptically contoured stable distribution, see Nolan (2013) <doi.org/10.1007/s00180-013-0396-7>.
mrstab.elliptical(n, alpha, Sigma, Mu)
Arguments
n: sample size
alpha: tail index parameter
Sigma: d by d positive definite dispersion matrix
Mu: location vector in R^d
Details
mrstab.elliptical() needs to install the mvtnorm package
Returns
an n by d matrix of numeric values
References
Nolan. J. P. (2013). Multivariate elliptically contoured stable distributions: theory and estimation, Computational Statistics, 28(5), 2067-2089.
Samorodnitsky, G. and Taqqu, M. S. (1994). Stable Non-Gaussian Random Processes: Stochastic Models and Infinite Variance, Chapman and Hall, London.
Author(s)
Mahdi Teimouri, Adel Mohammadpour, and Saralees Nadarajah
Note
mrstab.elliptical() generates iid realizations from d-dimensional elliptically contoured stable distribution based on definitions given by Nolan (2013) and Samorodnitsky and Taqqu (1994)
Examples
# In the following example, we simulate n=200 iid vectors of a two-dimensional elliptically# contoured stable distribution with parameters alpha=1.3, Sigma=matrix(c(1,.5,.5,1),2,2),# and mu=(0,0)^T.library("mvtnorm")library("stabledist")mrstab.elliptical(200,1.3,matrix(c(1,.5,.5,1),ncol=2,nrow=2),c(0,0))