Calculation of the log conditional density of the latent AMEN matrix Z given observed data Y.
ldZgbme(Z, Y, llYZ, EZ, rho, s2 =1)
Arguments
Z: n X n latent relational matrix following an AMEN model
Y: n X n observed relational matrix
llYZ: a vectorizable function taking two arguments, y and z. See details below.
EZ: n X n mean matrix for Z based on AMEN model (including additive effects)
rho: dyadic correlation in AMEN model for Z
s2: residual variance in AMEN model for Z
Returns
a symmetric matrix where entry i,j is proportional to the log conditional bivariate density of z[i,j],z[j,i].
Details
This function is used for updating dyadic pairs of the latent variable matrix Z based on Y and an AMEN model for Z. The function llYZ specifies the log likelihood for each single z[i,j] based on y[i,j], that is, llYZ gives the log probability density (or mass function) of y[i,j] given z[i,j].
Examples
## For (overdispersed) Poisson regression, usellYZ<-function(y,z){ dpois(y,z,log=TRUE)}