global_CI function

To obtain confidence intervals around the observed global network statistics

To obtain confidence intervals around the observed global network statistics

global_CI( network, n_versions = 100, network_metrics_functions_list = c(edge_density = function(x) igraph::edge_density(x), diameter = function(x) igraph::diameter(x, weights = NA), transitivity = function(x) igraph::transitivity(x)), CI_size = 0.95 )

Arguments

  • network: An igraph object consisting of observed network.
  • n_versions: Number of bootstrapped versions to be used. (default = 100)
  • network_metrics_functions_list: A list consisting of function definitions of the network metrics that the user wants to evaluate. Each element in the list should have an assigned name. Default = c("edge_density" = function(x) igraph::edge_density(x), "diameter" = function(x) igraph::diameter(x, weights = NA), "transitivity" = function(x) igraph::transitivity(x))
  • CI_size: Size of confidence interval. Default is 0.95 that generates a 95% confidence interval.

Returns

A DataFrame consisting of three columns. The first column contains the value of observed network metric, the second and third column represent the lower and upper limit of 95

Examples

data(elk_network_2010) global_CI(elk_network_2010, n_versions = 100, network_metrics_functions_list = c("edge_density" = function(x) igraph::edge_density(x), "diameter" = function(x) igraph::diameter(x, weights = NA), "transitivity" = function(x) igraph::transitivity(x)))
  • Maintainer: Prabhleen Kaur
  • License: MIT + file LICENSE
  • Last published: 2024-03-25

Useful links