gam_interp( formula =NULL, y, time, pred_times, se.fit = T, s_args =NULL, uncertainty.type, verbose = F
)
Arguments
formula: optionally specify formula for mgcv::gam() using y as response and time as predictor.
y: observations
time: times for observations
pred_times: prediction times
se.fit: logical default is TRUE; should standard pointwise errors be computed for interpolation
s_args: Arguments to mgcv::s() can be passed using a named list/vector.
uncertainty.type: State what type of uncertainty plot 1 is default for tails more than 1 is amount of predicted trajectories for each unique individual and blurs for blur plot
verbose: logical; TRUE prints messages about fitting details