conf_ints_virulence function

Approximate 95% confidence intervals for virulence

Approximate 95% confidence intervals for virulence

Function calculating the 95% confidence intervals for a hazard function based on the variance and covariance of its location and scale parameters.

conf_ints_virulence( a2 = a2, b2 = b2, var_a2 = var_a2, var_b2 = var_b2, cov_a2b2 = cov_a2b2, d2 = "", tmax = 21 )

Arguments

  • a2: numeric. Estimated value of location parameter describing mortality due to infection
  • b2: numeric. Estimated value of scale parameter describing mortality due to infection
  • var_a2: numeric. Estimated variance of location parameter describing mortality due to infection
  • var_b2: numeric. Estimated variance of scale parameter describing mortality due to infection
  • cov_a2b2: numeric. Estimated covariance of location and scale parameters above
  • d2: character. Probability distribution assumed to describe virulence; Weibull, Gumbel or Fréchet
  • tmax: maximum time virulence will be calculated for. Default value; tmax = 21

Returns

matrix containing estimates of virulence over time ± approx. 95% confidence intervals

Details

The approach is based on the interval being estimated as a complementary log-log function of the hazard function, h(t), with the variance of virulence being estimated by the Delta method applied to log(h[t]).

Examples

# the values, variance and covariance of the location and scale parameters # [a2,a2] describing mortality due to infection were estimated as; # a2 = 2.5807642 # b2 = 0.1831328 # var_a2 = 0.0008196927 # var_b2 = 0.0010007282 # cov_a2b2 = -0.0003119921 ci_matrix01 <- conf_ints_virulence( a2 = 2.5807642, b2 = 0.1831328, var_a2 = 0.0008196927, var_b2 = 0.0010007282, cov_a2b2 = -0.0003119921, d2 = "Weibull", tmax = 15) tail(ci_matrix01) plot(ci_matrix01[, 't'], ci_matrix01[, 'h2'], type = 'l', col = 'red', xlab = 'time', ylab = 'virulence (± 95% ci)') lines(ci_matrix01[, 'lower_ci'], col = 'grey') lines(ci_matrix01[, 'upper_ci'], col = 'grey')