nll_frailty_logscale function

Negative log-likelihood function: frailty variables on logscale

Negative log-likelihood function: frailty variables on logscale

This negative log-likelihood (nll) function is the same as 'nll_frailty', except it assumes the variables to estimate are on a logscale.

nll_frailty_logscale( log.a1 = log.a1, log.b1 = log.b1, log.a2 = log.a2, log.b2 = log.b2, log.theta = log.theta, data = data, time = time, censor = censor, infected_treatment = infected_treatment, d1 = "Weibull", d2 = "Weibull", d3 = "" )

Arguments

  • log.a1, log.b1: location and scale parameters for background mortality, on a logscale
  • log.a2, log.b2: location and scale parameters for mortality due to infection, on a logscale
  • log.theta: parameter describing variance of the unobserved variation in virulence, on a logscale
  • data: name of data frame containing survival data
  • time: name of data frame column identifying time of event; time > 0
  • censor: name of data frame column idenifying if event was death (0) or right-censoring (1)
  • infected_treatment: name of data frame column identifying if data are from an infected (1) or uninfected (0) treatment
  • d1, d2: names of probability distributions chosen to describe background mortality and mortality due to infection, respectively; both default to the Weibull distribution
  • d3: name of probability distribution chosen to describe unobserved frailty; choice of 'gamma' or 'inverse Gaussian'

Returns

numeric

Examples

### Example 1: unobserved variation in virulence with gamma distribution # step #1: parameterise nll function to be passed to 'mle2' m01_prep_function <- function( log.a1 = log.a1, log.b1 = log.b1, log.a2 = log.a2, log.b2 = log.b2, log.theta = log.theta){ nll_frailty_logscale( log.a1 = log.a1, log.b1 = log.b1, log.a2 = log.a2, log.b2 = log.b2, log.theta = log.theta, data = data_lorenz, time = t, censor = censored, infected_treatment = g, d1 = "Gumbel", d2 = "Weibull", d3 = "Gamma" )} # step #2: send 'prep_function' to 'mle2' for maximum likelihood estimation m01 <- mle2( m01_prep_function, start = list( log.a1 = 3, log.b1 = 1.5, log.a2 = 0.7, log.b2 = -0.7, log.theta = 1 ) ) summary(m01) exp(coef(m01))

See Also

nll_frailty