log.a1, log.b1: location and scale parameters for background mortality, on a logscale
log.a2, log.b2: location and scale parameters for mortality due to infection, on a logscale
log.theta: parameter describing variance of the unobserved variation in virulence, on a logscale
data: name of data frame containing survival data
time: name of data frame column identifying time of event; time > 0
censor: name of data frame column idenifying if event was death (0) or right-censoring (1)
infected_treatment: name of data frame column identifying if data are from an infected (1) or uninfected (0) treatment
d1, d2: names of probability distributions chosen to describe background mortality and mortality due to infection, respectively; both default to the Weibull distribution
d3: name of probability distribution chosen to describe unobserved frailty; choice of 'gamma' or 'inverse Gaussian'
Returns
numeric
Examples
### Example 1: unobserved variation in virulence with gamma distribution# step #1: parameterise nll function to be passed to 'mle2' m01_prep_function <-function( log.a1 = log.a1, log.b1 = log.b1, log.a2 = log.a2, log.b2 = log.b2, log.theta = log.theta){ nll_frailty_logscale( log.a1 = log.a1, log.b1 = log.b1, log.a2 = log.a2, log.b2 = log.b2, log.theta = log.theta, data = data_lorenz, time = t, censor = censored, infected_treatment = g, d1 ="Gumbel", d2 ="Weibull", d3 ="Gamma")}# step #2: send 'prep_function' to 'mle2' for maximum likelihood estimation m01 <- mle2( m01_prep_function, start = list( log.a1 =3, log.b1 =1.5, log.a2 =0.7, log.b2 =-0.7, log.theta =1)) summary(m01) exp(coef(m01))