Subset Partitioning via Anticlustering
| Package name | Version | Title | Date | Size | License | |
|---|---|---|---|---|---|---|
| anticlust | 0.8.13 | Subset Partitioning via Anticlustering | Sat Nov 29 2025 | 598.12kB | MIT + file LICENSE | |
| anticlust | 0.8.12 | Subset Partitioning via Anticlustering | Fri Oct 31 2025 | 589.86kB | MIT + file LICENSE | |
| anticlust | 0.8.10-1 | Subset Partitioning via Anticlustering | Wed Mar 26 2025 | 430.70kB | MIT + file LICENSE | |
| anticlust | 0.8.10 | Subset Partitioning via Anticlustering | Thu Mar 13 2025 | 430.87kB | MIT + file LICENSE | |
| anticlust | 0.8.9-1 | Subset Partitioning via Anticlustering | Mon Jan 20 2025 | 430.62kB | MIT + file LICENSE | |
| anticlust | 0.8.9 | Subset Partitioning via Anticlustering | Fri Jan 17 2025 | 430.57kB | MIT + file LICENSE | |
| anticlust | 0.8.7 | Subset Partitioning via Anticlustering | Tue Oct 01 2024 | 406.19kB | MIT + file LICENSE | |
| anticlust | 0.8.5 | Subset Partitioning via Anticlustering | Sun May 05 2024 | 394.10kB | MIT + file LICENSE | |
| anticlust | 0.8.3 | Subset Partitioning via Anticlustering | Wed Apr 24 2024 | 373.98kB | MIT + file LICENSE | |
| anticlust | 0.8.1 | Subset Partitioning via Anticlustering | Thu Oct 26 2023 | 382.55kB | MIT + file LICENSE | |
| anticlust | 0.8.0-1 | Subset Partitioning via Anticlustering | Wed Oct 25 2023 | 392.56kB | MIT + file LICENSE | |
| anticlust | 0.8.0 | Subset Partitioning via Anticlustering | Wed Sep 13 2023 | 393.08kB | MIT + file LICENSE | |
| anticlust | 0.7.0 | Subset Partitioning via Anticlustering | Sat Jul 15 2023 | 382.72kB | MIT + file LICENSE | |
| anticlust | 0.6.4 | Subset Partitioning via Anticlustering | Tue May 02 2023 | 326.46kB | MIT + file LICENSE | |
| anticlust | 0.6.3 | Subset Partitioning via Anticlustering | Mon Jan 30 2023 | 311.06kB | MIT + file LICENSE | |
| anticlust | 0.6.1 | Subset Partitioning via Anticlustering | Tue Dec 07 2021 | 298.09kB | MIT + file LICENSE | |
| anticlust | 0.6.0 | Subset Partitioning via Anticlustering | Wed Dec 01 2021 | 298.15kB | MIT + file LICENSE | |
| anticlust | 0.5.6 | Subset Partitioning via Anticlustering | Tue Nov 24 2020 | 304.02kB | MIT + file LICENSE | |
| anticlust | 0.5.3 | Subset Partitioning via Anticlustering | Fri Sep 25 2020 | 289.91kB | MIT + file LICENSE | |
| anticlust | 0.5.0 | Subset Partitioning via Anticlustering | Mon Jun 29 2020 | 241.16kB | MIT + file LICENSE |
The method of anticlustering partitions a pool of elements into groups (i.e., anticlusters) with the goal of maximizing between-group similarity or within-group heterogeneity. The anticlustering approach thereby reverses the logic of cluster analysis that strives for high within-group homogeneity and clear separation between groups. Computationally, anticlustering is accomplished by maximizing instead of minimizing a clustering objective function, such as the intra-cluster variance (used in k-means clustering) or the sum of pairwise distances within clusters. The main function anticlustering() gives access to optimal and heuristic anticlustering methods described in Papenberg and Klau (2021; <doi:10.1037/met0000301>), Brusco et al. (2020; <doi:10.1111/bmsp.12186>), Papenberg (2024; <doi:10.1111/bmsp.12315>), Papenberg, Wang, et al. (2025; <doi:10.1016/j.crmeth.2025.101137>), Papenberg, Breuer, et al. (2025; <doi:10.1017/psy.2025.10052>), and Yang et al. (2022; <doi:10.1016/j.ejor.2022.02.003>). The optimal algorithms require that an integer linear programming solver is installed. This package will install 'lpSolve' (<https://cran.r-project.org/package=lpSolve>) as a default solver, but it is also possible to use the package 'Rglpk' (<https://cran.r-project.org/package=Rglpk>), which requires the GNU linear programming kit (<https://www.gnu.org/software/glpk/glpk.html>), the package 'Rsymphony' (<https://cran.r-project.org/package=Rsymphony>), which requires the SYMPHONY ILP solver (<https://github.com/coin-or/SYMPHONY>), or the commercial solver Gurobi, which provides its own R package that is not available via CRAN (<https://www.gurobi.com/downloads/>). 'Rglpk', 'Rsymphony', 'gurobi' and their system dependencies have to be manually installed by the user because they are only suggested dependencies. Full access to the bicriterion anticlustering method proposed by Brusco et al. (2020) is given via the function bicriterion_anticlustering(), while kplus_anticlustering() implements the full functionality of the k-plus anticlustering approach proposed by Papenberg (2024). Some other functions are available to solve classical clustering problems. The function balanced_clustering() applies a cluster analysis under size constraints, i.e., creates equal-sized clusters. The function matching() can be used for (unrestricted, bipartite, or K-partite) matching. The function wce() can be used optimally solve the (weighted) cluster editing problem, also known as correlation clustering, clique partitioning problem or transitivity clustering.
Useful links