anticlust0.8.13 package

Subset Partitioning via Anticlustering

Package nameVersionTitleDateSizeLicense
anticlust
0.8.13
Subset Partitioning via AnticlusteringSat Nov 29 2025598.12kBMIT + file LICENSE
anticlust
0.8.12
Subset Partitioning via AnticlusteringFri Oct 31 2025589.86kBMIT + file LICENSE
anticlust
0.8.10-1
Subset Partitioning via AnticlusteringWed Mar 26 2025430.70kBMIT + file LICENSE
anticlust
0.8.10
Subset Partitioning via AnticlusteringThu Mar 13 2025430.87kBMIT + file LICENSE
anticlust
0.8.9-1
Subset Partitioning via AnticlusteringMon Jan 20 2025430.62kBMIT + file LICENSE
anticlust
0.8.9
Subset Partitioning via AnticlusteringFri Jan 17 2025430.57kBMIT + file LICENSE
anticlust
0.8.7
Subset Partitioning via AnticlusteringTue Oct 01 2024406.19kBMIT + file LICENSE
anticlust
0.8.5
Subset Partitioning via AnticlusteringSun May 05 2024394.10kBMIT + file LICENSE
anticlust
0.8.3
Subset Partitioning via AnticlusteringWed Apr 24 2024373.98kBMIT + file LICENSE
anticlust
0.8.1
Subset Partitioning via AnticlusteringThu Oct 26 2023382.55kBMIT + file LICENSE
anticlust
0.8.0-1
Subset Partitioning via AnticlusteringWed Oct 25 2023392.56kBMIT + file LICENSE
anticlust
0.8.0
Subset Partitioning via AnticlusteringWed Sep 13 2023393.08kBMIT + file LICENSE
anticlust
0.7.0
Subset Partitioning via AnticlusteringSat Jul 15 2023382.72kBMIT + file LICENSE
anticlust
0.6.4
Subset Partitioning via AnticlusteringTue May 02 2023326.46kBMIT + file LICENSE
anticlust
0.6.3
Subset Partitioning via AnticlusteringMon Jan 30 2023311.06kBMIT + file LICENSE
anticlust
0.6.1
Subset Partitioning via AnticlusteringTue Dec 07 2021298.09kBMIT + file LICENSE
anticlust
0.6.0
Subset Partitioning via AnticlusteringWed Dec 01 2021298.15kBMIT + file LICENSE
anticlust
0.5.6
Subset Partitioning via AnticlusteringTue Nov 24 2020304.02kBMIT + file LICENSE
anticlust
0.5.3
Subset Partitioning via AnticlusteringFri Sep 25 2020289.91kBMIT + file LICENSE
anticlust
0.5.0
Subset Partitioning via AnticlusteringMon Jun 29 2020241.16kBMIT + file LICENSE

The method of anticlustering partitions a pool of elements into groups (i.e., anticlusters) with the goal of maximizing between-group similarity or within-group heterogeneity. The anticlustering approach thereby reverses the logic of cluster analysis that strives for high within-group homogeneity and clear separation between groups. Computationally, anticlustering is accomplished by maximizing instead of minimizing a clustering objective function, such as the intra-cluster variance (used in k-means clustering) or the sum of pairwise distances within clusters. The main function anticlustering() gives access to optimal and heuristic anticlustering methods described in Papenberg and Klau (2021; <doi:10.1037/met0000301>), Brusco et al. (2020; <doi:10.1111/bmsp.12186>), Papenberg (2024; <doi:10.1111/bmsp.12315>), Papenberg, Wang, et al. (2025; <doi:10.1016/j.crmeth.2025.101137>), Papenberg, Breuer, et al. (2025; <doi:10.1017/psy.2025.10052>), and Yang et al. (2022; <doi:10.1016/j.ejor.2022.02.003>). The optimal algorithms require that an integer linear programming solver is installed. This package will install 'lpSolve' (<https://cran.r-project.org/package=lpSolve>) as a default solver, but it is also possible to use the package 'Rglpk' (<https://cran.r-project.org/package=Rglpk>), which requires the GNU linear programming kit (<https://www.gnu.org/software/glpk/glpk.html>), the package 'Rsymphony' (<https://cran.r-project.org/package=Rsymphony>), which requires the SYMPHONY ILP solver (<https://github.com/coin-or/SYMPHONY>), or the commercial solver Gurobi, which provides its own R package that is not available via CRAN (<https://www.gurobi.com/downloads/>). 'Rglpk', 'Rsymphony', 'gurobi' and their system dependencies have to be manually installed by the user because they are only suggested dependencies. Full access to the bicriterion anticlustering method proposed by Brusco et al. (2020) is given via the function bicriterion_anticlustering(), while kplus_anticlustering() implements the full functionality of the k-plus anticlustering approach proposed by Papenberg (2024). Some other functions are available to solve classical clustering problems. The function balanced_clustering() applies a cluster analysis under size constraints, i.e., creates equal-sized clusters. The function matching() can be used for (unrestricted, bipartite, or K-partite) matching. The function wce() can be used optimally solve the (weighted) cluster editing problem, also known as correlation clustering, clique partitioning problem or transitivity clustering.

  • Maintainer: Martin Papenberg
  • License: MIT + file LICENSE
  • Last published: 2025-11-29