aphylo_mle function

Model estimation using Maximum Likelihood Estimation

Model estimation using Maximum Likelihood Estimation

The function is a wrapper of stats::optim().

aphylo_mle( model, params, method = "L-BFGS-B", priors = function(p) 1, control = list(), lower = 1e-05, upper = 1 - 1e-05, check_informative = getOption("aphylo_informative", FALSE), reduced_pseq = getOption("aphylo_reduce_pseq", TRUE) )

Arguments

  • model: A model as specified in aphylo-model .
  • params: A vector of length 7 with initial parameters. In particular psi[1], psi[2], mu[1], mu[2], eta[1], eta[2] and Pi.
  • method, control, lower, upper: Arguments passed to stats::optim().
  • priors: A function to be used as prior for the model (see bprior ).
  • check_informative: Logical scalar. When TRUE the algorithm stops with an error when the annotations are uninformative (either 0s or 1s).
  • reduced_pseq: Logical. When TRUE it will use a reduced peeling sequence in which it drops unannotated leafs. If the model includes eta this is set to FALSE.

Returns

An object of class aphylo_estimates .

Details

The default starting parameters are described in APHYLO_PARAM_DEFAULT .

Examples

# Using simulated data ------------------------------------------------------ set.seed(19) dat <- raphylo(100) dat <- rdrop_annotations(dat, .4) # Computing Estimating the parameters ans <- aphylo_mle(dat ~ psi + mu_d + eta + Pi) ans # Plotting the path plot(ans) # Computing Estimating the parameters Using Priors for all the parameters mypriors <- function(params) { dbeta(params, c(2, 2, 2, 2, 1, 10, 2), rep(10, 7)) } ans_dbeta <- aphylo_mle(dat ~ psi + mu_d + eta + Pi, priors = mypriors) ans_dbeta

See Also

Other parameter estimation: APHYLO_DEFAULT_MCMC_CONTROL

  • Maintainer: George Vega Yon
  • License: MIT + file LICENSE
  • Last published: 2024-12-03