abcnonHtest function

Nonparametric ABC (Approximate Bootstrap Confidence) intervals.

Nonparametric ABC (Approximate Bootstrap Confidence) intervals.

A hypothesis testing function using the nonparametric ABC intervals.

abcnonHtest(x, tt, nullValue = NULL, conf.level = 0.95, alternative = c("two.sided", "less", "greater"), epsilon = 0.001, minp = 0.001)

Arguments

  • x: the data. Must be either a vector, or a matrix whose rows are the observations

  • tt: function defining the parameter in the resampling form tt(p,x), where p is the vector of proportions and x

    is the data

  • nullValue: null value of the parameter for the two-sided hypothesis test, or boundary of null parameter space for one-sided ones

  • conf.level: confidence level for interval

  • alternative: a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". You can specify just the initial letter.

  • epsilon: optional argument specifying step size for finite difference calculations

  • minp: minimum p-value (used in uniroot search to give a bound, toe two.sided alternatives actual minimum is 2*minp)

Details

Calculates the nonparametric ABC confidence interval of DiCiccio and Efron (1992). See also Efron and Tibshirani (1993).

The p-values are calculated by solving for confidence limit that just touches the nullValue. If it is outside of the range (minp, 1-minp) for one-sided p-values, then it is set to minp. If it is outside the range (2minp, 1- 2minp) for two-sided p-values, then it is set to 2*minp.

Returns

A value of class "htest" containing the following components: - p.value: p-value for test defined by alternative and nullValue

  • estimate: estimate of the parameter, calculated using x and the tt function

  • conf.int: confidence interval for the parameter associated with tt

  • null.value: the nullValue (or null boundary) for the hypothesis test

  • alternative: a character string describing the alternative hypothesis

  • method: a character string describing the kind of test

  • data.name: a character string giving the name of the data and the function

References

DiCiccio, T and Efron, B (1992). More accurate confidence intervals in exponential families. Biometrika 79: 231-245.

Efron, B and Tibshirani, RJ (1993). An introduction to the bootstrap. Chapman and Hall: New York.

Author(s)

the function is modification of abcnon in the bootstrap R package, originally written by Rob Tibshirani, modifications by M.P. Fay

See Also

See also abcnon.

Examples

# compute abc intervals for the mean x <- c(2,4,12,4,6,3,5,7,6) theta <- function(p,x) {sum(p*x)/sum(p)} ## smallest p-value is 2*minp for two-sided alternatives abcnonHtest(x, theta, nullValue=0) ## test null at 95% confidence limit is like just barely ## rejecting at the two-sided 5% level, so p-value is 0.05 abcnonHtest(x, theta, nullValue=4.072772) # compute abc intervals for the correlation set.seed(1) x <- matrix(rnorm(20),ncol=2) theta <- function(p, x) { x1m <- sum(p * x[, 1])/sum(p) x2m <- sum(p * x[, 2])/sum(p) num <- sum(p * (x[, 1] - x1m) * (x[, 2] - x2m)) den <- sqrt(sum(p * (x[, 1] - x1m)^2) * sum(p * (x[, 2] - x2m)^2)) return(num/den) } abcnonHtest(x, theta) ## compare with ## Not run: library(bootstrap) abcnon(x, theta, alpha=c(.025,.975))$limits[,"abc"] ## End(Not run)
  • Maintainer: Michael P. Fay
  • License: GPL-3
  • Last published: 2023-08-24

Useful links