asm.fit function

Fit a linear regression model via antitonic score matching

Fit a linear regression model via antitonic score matching

Performs linear regression via M-estimation with respect to a data-driven convex loss function

asm.fit( X, Y, betapilot = "LAD", alt_iter = 2, intercept.selection = "mean", k = 3000, max_iter = 65, kernel_pts = 2^15, bw = "nrd0", kernel = "gaussian", verbose = FALSE, ... )

Arguments

  • X: design matrix
  • Y: response vector
  • betapilot: initial estimate of the regression coefficients: can be "LAD", "OLS" or a vector of coefficients
  • alt_iter: number of iterations of the alternating procedure: when alt_iter == 1, this function is equivalent to asm_regression
  • intercept.selection: mean or median of the residuals if intercept.selection == "median", then the standard error of the intercept estimate is set to NA
  • k: the density quantile function is evaluated at (0, 1/k, 2/k, ..., 1)
  • max_iter: maximum number of iterations for the damped Newton–Raphson algorithm when minimizing the convex loss function
  • kernel_pts: number of points at which the kernel density estimate is evaluated, i.e. the parameter "n" in density()
  • bw: bandwidth for kernel density estimation i.e. the parameter "bw" in density()
  • kernel: kernel for kernel density estimation i.e. the parameter "kernel" in density()
  • verbose: logical; if TRUE, print optimization progress
  • ...: additional arguments to ensure compatibility with generic functions

Returns

asm class object containing the following components:

  • betahat:: vector of estimated coefficients
  • std_errs:: vector of standard errors of the estimated coefficients
  • fitted.values:: fitted values
  • residuals:: residuals
  • zvals:: z-values
  • sig_vals:: p-values
  • info_asm:: antitonic information
  • I_mat:: estimated antitonic information matrix
  • Cov_mat:: asymptotic covariance matrix of the estimated coefficients
  • psi:: estimated antitonic score function

Examples

n <- 1000 ; d <- 2 X <- matrix(rnorm(n * d), n, d) Y <- X %*% c(2, 3) + rnorm(n) # no intercept! asm.fit(X,Y)
  • Maintainer: Min Xu
  • License: GPL (>= 3)
  • Last published: 2025-03-23

Useful links