betapilot: initial estimate of the regression coefficients: can be "LAD", "OLS" or a vector of coefficients
alt_iter: number of iterations of the alternating procedure: when alt_iter == 1, this function is equivalent to asm_regression
intercept.selection: mean or median of the residuals if intercept.selection == "median", then the standard error of the intercept estimate is set to NA
k: the density quantile function is evaluated at (0, 1/k, 2/k, ..., 1)
max_iter: maximum number of iterations for the damped Newton–Raphson algorithm when minimizing the convex loss function
kernel_pts: number of points at which the kernel density estimate is evaluated, i.e. the parameter "n" in density()
bw: bandwidth for kernel density estimation i.e. the parameter "bw" in density()
kernel: kernel for kernel density estimation i.e. the parameter "kernel" in density()
verbose: logical; if TRUE, print optimization progress
...: additional arguments to ensure compatibility with generic functions
Returns
asm class object containing the following components:
betahat:: vector of estimated coefficients
std_errs:: vector of standard errors of the estimated coefficients
fitted.values:: fitted values
residuals:: residuals
zvals:: z-values
sig_vals:: p-values
info_asm:: antitonic information
I_mat:: estimated antitonic information matrix
Cov_mat:: asymptotic covariance matrix of the estimated coefficients
psi:: estimated antitonic score function
Examples
n <-1000; d <-2X <- matrix(rnorm(n * d), n, d)Y <- X %*% c(2,3)+ rnorm(n)# no intercept!asm.fit(X,Y)