formula: input formula (e.g. y ~ x1 + x2), where y and each x are NxN matrices
intercept: calculate intercept (TRUE or FALSE value)
directed: whether the network is directed or undirected (enter either "directed" or "undirected")
diagonal: whether to include self-loop values (TRUE or FALSE)
test.statistic: what to calculate P-value, either t-statistic ("t-value") or regression coefficient ("beta")
tol: tolerance value for the qr function
randomisations: number of randomisations to perform for calculating P-value.
Details
Calculate the regression coefficient for each input matrix using the DSP method in Dekker et al (2007). This method randomises the residuals from the regression on each independent variable (fixed effect) in order to calculate the P value. This is the same as testing whether y is related to x1 on y while controlling for x2. This differs from regular mrqap, where the dependent (y) value is randomised, testing for whether y is related to x1 and x2 together.
Returns
Returns a mrqap.dsp object containing the regression coefficient and P-values for each indendent matrix (x) and associated statistics
References
Dekker, D., Krackhard, D., Snijders, T.A.B (2007) Sensitivity of MRQAP tests to collinearity and autocorellation conditions. Psychometrika 72(4): 563-581.
Author(s)
Damien R. Farine
Examples
library(asnipe)data("individuals")data("group_by_individual")# Generate networknetwork <- get_network(gbi)# Create a species similarity matrixspecies <- array(0,dim(network))# Create a sex similarity matrixsex <- array(0,dim(network))# Fill each matrix with 1 (same) or 0 (different)for(i in1:nrow(network)){ species[i,-i]<- as.numeric(inds$SPECIES[i]== inds$SPECIES[-i]) sex[i,-i]<- as.numeric(inds$SEX[i]== inds$SEX[-i])}# Run mrqap.dsp# Note randomisations are limited to 10 to reduce runtimereg <- mrqap.dsp(network ~ species + sex, randomisations=10)# Look at resultsreg