Aster Models
Aster Models
Object Describing Saturated Aster Model
Constancy Spaces for Aster Models
Cumulant Functions for Aster Models
Families for Aster Models
Link Functions for Aster Models
Subset Object Describing Saturated Aster Model
Change-of-Parameter Functions for Aster Models
Aster models are exponential family regression models for life history analysis. They are like generalized linear models except that elements of the response vector can have different families (e. g., some Bernoulli, some Poisson, some zero-truncated Poisson, some normal) and can be dependent, the dependence indicated by a graphical structure. Discrete time survival analysis, zero-inflated Poisson regression, and generalized linear models that are exponential family (e. g., logistic regression and Poisson regression with log link) are special cases. Main use is for data in which there is survival over discrete time periods and there is additional data about what happens conditional on survival (e. g., number of offspring). Uses the exponential family canonical parameterization (aster transform of usual parameterization). Unlike the aster package, this package does dependence groups (nodes of the graph need not be conditionally independent given their predecessor node), including multinomial and two-parameter normal as families. Thus this package also generalizes mark-capture-recapture analysis.