atRisk0.1.0 package

At-Risk

The at-Risk (aR) approach is based on a two-step parametric estimation procedure that allows to forecast the full conditional distribution of an economic variable at a given horizon, as a function of a set of factors. These density forecasts are then be used to produce coherent forecasts for any downside risk measure, e.g., value-at-risk, expected shortfall, downside entropy. Initially introduced by Adrian et al. (2019) <doi:10.1257/aer.20161923> to reveal the vulnerability of economic growth to financial conditions, the aR approach is currently extensively used by international financial institutions to provide Value-at-Risk (VaR) type forecasts for GDP growth (Growth-at-Risk) or inflation (Inflation-at-Risk). This package provides methods for estimating these models. Datasets for the US and the Eurozone are available to allow testing of the Adrian et al. (2019) model. This package constitutes a useful toolbox (data and functions) for private practitioners, scholars as well as policymakers.

  • Maintainer: Quentin Lajaunie
  • License: GPL-3
  • Last published: 2023-08-08