autoBagging0.1.0 package

Learning to Rank Bagging Workflows with Metalearning

autoBagging

autoBagging

baggedtrees

bagged trees models

abmodel-class

abmodel-class

abmodel

abmodel

bagging

bagging method

bb

Boosting-based pruning of models

classmajority.landmarker.correlation

classmajority.landmarker.correlation

classmajority.landmarker.entropy

classmajority.landmarker.entropy

classmajority.landmarker.interinfo

classmajority.landmarker.interinfo

classmajority.landmarker.mutual.information

classmajority.landmarker.mutual.information

classmajority.landmarker

classmajority.landmarker

ContAttrs

Retrieve names of continuous attributes (not including the target)

dstump.landmarker_d1.correlation

dstump.landmarker_d1.correlation

dstump.landmarker_d1.entropy

dstump.landmarker_d1.entropy

dstump.landmarker_d1.interinfo

dstump.landmarker_d1.interinfo

dstump.landmarker_d1.mutual.information

dstump.landmarker_d1.mutual.information

dstump.landmarker_d1

dstump.landmarker_d1

dstump.landmarker_d2.correlation

dstump.landmarker_d2.correlation

dstump.landmarker_d2.entropy

dstump.landmarker_d2.entropy

dstump.landmarker_d2.interinfo

dstump.landmarker_d2.interinfo

dstump.landmarker_d2.mutual.information

dstump.landmarker_d2.mutual.information

dstump.landmarker_d2

dstump.landmarker_d2

dstump.landmarker_d3.correlation

dstump.landmarker_d3.correlation

dstump.landmarker_d3.entropy

dstump.landmarker_d3.entropy

dstump.landmarker_d3.interinfo

dstump.landmarker_d3.interinfo

dstump.landmarker_d3.mutual.information

dstump.landmarker_d3.mutual.information

dstump.landmarker_d3

dstump.landmarker_d3

get_target

get target variable

GetMeasure

Retrieve the value of a previously computed measure

KNORA.E

K-Nearest-ORAcle-Eliminate

lda.landmarker.correlation

lda.landmarker.correlation

majority_voting

majority voting

mdsq

Margin Distance Minimization

nb.landmarker.correlation

nb.landmarker.correlation

nb.landmarker.entropy

nb.landmarker.entropy

nb.landmarker.interinfo

nb.landmarker.interinfo

nb.landmarker.mutual.information

nb.landmarker.mutual.information

nb.landmarker

nb.landmarker

OLA

Overall Local Accuracy

predict-abmodel-method

Predicting on new data with a abmodel model

ReadDF

FUNCTION TO TRANSFORM DATA FRAME INTO LIST WITH GSI REQUIREMENTS

SymbAttrs

Retrieve names of symbolic attributes (not including the target)

A framework for automated machine learning. Concretely, the focus is on the optimisation of bagging workflows. A bagging workflows is composed by three phases: (i) generation: which and how many predictive models to learn; (ii) pruning: after learning a set of models, the worst ones are cut off from the ensemble; and (iii) integration: how the models are combined for predicting a new observation. autoBagging optimises these processes by combining metalearning and a learning to rank approach to learn from metadata. It automatically ranks 63 bagging workflows by exploiting past performance and dataset characterization. A complete description of the method can be found in: Pinto, F., Cerqueira, V., Soares, C., Mendes-Moreira, J. (2017): "autoBagging: Learning to Rank Bagging Workflows with Metalearning" arXiv preprint arXiv:1706.09367.

  • Maintainer: Vitor Cerqueira
  • License: GPL (>= 2)
  • Last published: 2017-07-02