pcm_dif function

Estimation of The Partial Credit Model with DIF

Estimation of The Partial Credit Model with DIF

This function computes the parameter estimates of a partial credit model with DIF for dichotomous and polytomous responses by implementing the coordinate descent.

fitStats compute the fit statistics (i.e., Outfit and Infit) of the PCM-DIF model estimation (items and persons).

pcm_dif( X, init_par = c(), groups_map = c(), setting = c(), method = c("fast", "novel") ) ## S3 method for class 'pcmdif' fitStats(obj, isAlpha = TRUE) ## S3 method for class 'pcmdif' summary(object, ...) ## S3 method for class 'pcmdif' print(x, ...)

Arguments

  • X: A matrix or data frame as an input with ordinal responses (starting from 0); rows represent individuals, columns represent items.
  • init_par: a vector of initial values of the estimated parameters.
  • groups_map: Binary matrix. Respondents membership to DIF groups; rows represent individuals, column represent group partitions.
  • setting: a list of the optimization control setting parameters.See autoRaschOptions()
  • method: The implementation option of log likelihood function. fast using a c++ implementation and novel using an R implementation.
  • obj: The object of class 'pcmdif'.
  • isAlpha: Boolean value that indicates whether the discrimination parameters is needed to be estimated or not. The discrimination parameters are estimated using the corresponding models (GPCM or GPCM-DIF).
  • object: The object of class 'pcmdif'.
  • ...: Further arguments to be passed.
  • x: The object of class 'pcmdif'.

Returns

‘pcm_dif()’ will return a ‘list’ which contains:

  • X: The dataset that is used for estimation.

  • mt_vek: A vector of the highest response given to items.

  • itemName: The vector of names of items (columns) in the dataset.

  • loglik: The log likelihood of the estimation.

  • hessian: The hessian matrix. Only when the isHessian = TRUE.

  • beta: A vector of the difficulty parameter of each categories of items (thresholds).

  • theta: A vector of the ability parameters of each individuals.

‘fitStats()’ will return a ‘list’ which contains:

  • alpha: A vector of estimated discrimination parameters for each items.

i.fitItem fit statistics.

  • i.outfitMSQA vector of Outfit mean square values for each items.
  • i.infitMSQA vector of Infit mean square values for each items.
  • i.outfitZA vector of OutfitZ values for each items.
  • i.infitZA vector of InfitZ values for each items.

p.fitPerson fit statistics.

  • p.outfitMSQA vector of Outfit mean square values for each persons.
  • p.infitMSQA vector of Infit mean square values for each persons.
  • p.outfitZA vector of OutfitZ values for each persons.
  • p.infitZA vector of InfitZ values for each persons.

traceMatSome computed matrices in the process.

  • ematThe expected values matrix.
  • vmatThe variance matrix.
  • cmatThe curtosis matrix.
  • std.resThe standardized residual.

Examples

## Not run: pcmdif_res <- pcm_dif(shortDIF, groups_map = c(rep(1,50),rep(0,50))) fit_res <- fitStats(pcmdif_res) itemfit(fit_res) personfit(fit_res) plot_fitStats(fit_res, toPlot = c("alpha","outfit"), useName = FALSE) ## End(Not run)

See Also

pcm, pcm_dif, gpcm, gpcm_dif

  • Maintainer: Feri Wijayanto
  • License: GPL-2
  • Last published: 2022-10-19

Useful links