This function computes the parameter estimates of a partial credit model with DIF for dichotomous and polytomous responses by implementing the coordinate descent.
fitStats compute the fit statistics (i.e., Outfit and Infit) of the PCM-DIF model estimation (items and persons).
pcm_dif( X, init_par = c(), groups_map = c(), setting = c(), method = c("fast","novel"))## S3 method for class 'pcmdif'fitStats(obj, isAlpha =TRUE)## S3 method for class 'pcmdif'summary(object,...)## S3 method for class 'pcmdif'print(x,...)
Arguments
X: A matrix or data frame as an input with ordinal responses (starting from 0); rows represent individuals, columns represent items.
init_par: a vector of initial values of the estimated parameters.
groups_map: Binary matrix. Respondents membership to DIF groups; rows represent individuals, column represent group partitions.
setting: a list of the optimization control setting parameters.See autoRaschOptions()
method: The implementation option of log likelihood function. fast using a c++ implementation and novel using an R implementation.
obj: The object of class 'pcmdif'.
isAlpha: Boolean value that indicates whether the discrimination parameters is needed to be estimated or not. The discrimination parameters are estimated using the corresponding models (GPCM or GPCM-DIF).
object: The object of class 'pcmdif'.
...: Further arguments to be passed.
x: The object of class 'pcmdif'.
Returns
‘pcm_dif()’ will return a ‘list’ which contains:
X: The dataset that is used for estimation.
mt_vek: A vector of the highest response given to items.
itemName: The vector of names of items (columns) in the dataset.
loglik: The log likelihood of the estimation.
hessian: The hessian matrix. Only when the isHessian = TRUE.
beta: A vector of the difficulty parameter of each categories of items (thresholds).
theta: A vector of the ability parameters of each individuals.
‘fitStats()’ will return a ‘list’ which contains:
alpha: A vector of estimated discrimination parameters for each items.
i.fitItem fit statistics.
i.outfitMSQA vector of Outfit mean square values for each items.
i.infitMSQA vector of Infit mean square values for each items.
i.outfitZA vector of OutfitZ values for each items.
i.infitZA vector of InfitZ values for each items.
p.fitPerson fit statistics.
p.outfitMSQA vector of Outfit mean square values for each persons.
p.infitMSQA vector of Infit mean square values for each persons.
p.outfitZA vector of OutfitZ values for each persons.
p.infitZA vector of InfitZ values for each persons.