search function

Stepwise Selection Search

Stepwise Selection Search

To search itemset that give maximum value of the criterion

stepwise_search( X, criterion = c("ipoqll", "ipoqlldif"), incl_set = c(), groups_map = c(), cores = NULL, isContinued = FALSE, prevData = c(), fileOutput = FALSE, tempFile = "temp_stepSearch.RData", isConvert = FALSE, setting_par_iq = c(), setting_par_oq = c(), method = c("fast", "novel"), isTraced = FALSE ) backward_search( X, criterion = c("ipoqll", "ipoqlldif"), incl_set = c(), groups_map = c(), cores = NULL, isContinued = FALSE, prevData = c(), isConvert = FALSE, setting_par_iq = c(), fileOutput = FALSE, setting_par_oq = c(), method = c("fast", "novel"), tempFile = "temp_backSearch.RData", isTraced = FALSE ) ## S3 method for class 'search' summary(object, ...) ## S3 method for class 'search' print(x, ...) plot_search(obj, remOrdered = TRUE, locateMax = TRUE, ...)

Arguments

  • X: A matrix or data.frame of the observed responses (ordinal or binary response).
  • criterion: The criterion that should be used. The default is ipoqll.
  • incl_set: A vector of initial items in the included set to start the search. The default is to start with full items.
  • groups_map: A matrix or vector to map the subject to the DIFs groups.
  • cores: An integer value of number of cores should be used for computation. The default is 2.
  • isContinued: A logical value whether this search is continuing another unfinished search.
  • prevData: The filename of the temporary .RData file of the unfinished search.
  • fileOutput: The filename if it is wished to save the output results in file (.RData and .csv) and FALSE if not.
  • tempFile: The filename of the temporary file to track the search progress. The default is "temp_stepSearch.RData" which also automatically produces "temp_stepSearch.csv".
  • isConvert: A logical value whether it is wanted to recompute the score of the search results using IPOQ-LL-DIF criterion.
  • setting_par_iq: a list of the optimization control setting parameters for the included set. See setting parameter in autoRaschOptions().
  • setting_par_oq: a list of the optimization control setting parameters for the included set. See setting parameter in autoRaschOptions().
  • method: The implementation option of log likelihood function. fast using a c++ implementation and novel using an R implementation.
  • isTraced: A logical value whether the progress need to be tracked or not.
  • object: The object of class 'search'.
  • ...: Further arguments to be passed.
  • x: The object of class 'search'.
  • obj: An object of class "search".
  • remOrdered: A logical statement whether show the order of the items removal or not.
  • locateMax: A logical statement whether the location of the maximum score is needed to be marked or not.

Returns

Matrix of the highest scores (IQ-LL, OQ-LL, and IPOQ-LL) for every number of items in the included set in the set along with the corresponding itemset.

Details

To search the itemset that give the maximum score.

Examples

## Not run: search_res <- backward_search(shortDIF,criterion = "ipoqll", incl_set = c(1:4), cores = 2) plot_search(search_res, type="l") ## End(Not run)
  • Maintainer: Feri Wijayanto
  • License: GPL-2
  • Last published: 2022-10-19

Useful links