avar_mo_cpp function

Compute Maximal-Overlap Allan Variance using Means

Compute Maximal-Overlap Allan Variance using Means

Computation of Maximal-Overlap Allan Variance

avar_mo_cpp(x)

Arguments

  • x: A vector with dimensions N x 1.

Returns

av A list that contains:

  • "clusters"The size of the cluster
  • "allan"The Allan variance
  • "errors"The error associated with the variance estimation.

Details

Given NN equally spaced samples with averaging time tau=ntau0tau = n*tau_0, where nn is an integer such that 1<=n<=N/21<= n <= N/2. Therefore, nn is able to be selected from nn<floor(log2(N)){n|n< floor(log2(N))}

Then, M=N2nM = N - 2n samples exist. The Maximal-overlap estimator is given by: 12(N2k+1)t=2kN[Yˉt(k)Yˉtk(k)]2\frac{1}{{2\left( {N - 2k + 1} \right)}}\sum\limits_{t = 2k}^N {{{\left[ {{{\bar Y}_t}\left( k \right) - {{\bar Y}_{t - k}}\left( k \right)} \right]}^2}}

where yˉt(τ)=1τi=0τ1yˉti{{\bar y}_t}\left( \tau \right) = \frac{1}{\tau }\sum\limits_{i = 0}^{\tau - 1} {{{\bar y}_{t - i}}}.

Examples

set.seed(999) N = 100000 white.noise = rnorm(N, 0, 2) random.walk = cumsum(0.1*rnorm(N, 0, 2)) combined.ts = white.noise+random.walk av_mat = avar_mo_cpp(combined.ts)

References

Long-Memory Processes, the Allan Variance and Wavelets, D. B. Percival and P. Guttorp

Author(s)

JJB

  • Maintainer: Stéphane Guerrier
  • License: AGPL-3
  • Last published: 2023-08-29