data_nplcm: Data. See nplcm() function for data structure.
silent: Default is TRUE for no messages; FALSE otherwise.
Returns
A list of model specifications:
num_slice A vector counting the No. of measurement slices for each level of measurement quality (e.g., MBS, MSS, MGS representing Bronze-Standard Measurements - case-control, Silver-Standard Measurements and Gold-Standard Measurements - case-only);
nested Local dependence specification for modeling bronze-standard data. TRUE for nested models (conditional dependence given disease class); FALSE for non-nested models (conditional independence given disease class). One for each BrS slice.
regression
do_reg_EtiTRUE for doing etiology regression. It means let the etiology fractions vary with explanatory variables. FALSE otherwise;
do_reg_FPR A vector whose names represent the slices of bronze-standard data. For each slice of BrS measurements, TRUE does false positive rate regression. It means the false positive rates, estimatable from controls, can vary with covariates; FALSE otherwise.
is_discrete_predictor A list of names "Eti", and the names for every slice of bronze-standard data. TRUE
if all predictors are discrete; FALSE otherwise.
Details
assign_model will be modified to check if data are conformable to specified model.
Examples
cause_list <- c(LETTERS[1:6])J.BrS <-6model_options_no_reg <- list(likelihood = list( cause_list = cause_list, k_subclass =2, Eti_formula =~-1,# no covariate for the etiology regression FPR_formula = list( MBS1 =~-1)# no covariate for the subclass weight regression),use_measurements = c("BrS"),# use bronze-standard data only for model estimation.prior= list( Eti_prior = overall_uniform(1,cause_list),# Dirichlet(1,...,1) prior for the etiology. TPR_prior = list(BrS = list( info ="informative",# informative prior for TPRs input ="match_range",# specify the informative prior for TPRs by specifying a plausible range. val = list(MBS1 = list(up = list(rep(0.99,J.BrS)),# upper ranges: matched to 97.5% quantile of a Beta prior low = list(rep(0.55,J.BrS))))# lower ranges: matched to 2.5% quantile of a Beta prior))))data("data_nplcm_noreg")assign_model(model_options_no_reg,data_nplcm_noreg)