plot_etiology_regression function

visualize the etiology regression with a continuous covariate

visualize the etiology regression with a continuous covariate

This function visualizes the etiology regression against one continuous covariate, e.g., enrollment date. (NB: dealing with NoA, multiple-pathogen causes, other continuous covariates? also there this function only plots the first slice - so generalization may be useful - give users an option to choose slice s; currently default to the first slice.)

plot_etiology_regression( DIR_NPLCM, stratum_bool, slice = 1, plot_basis = FALSE, truth = NULL, RES_NPLCM = NULL, do_plot = TRUE, do_rug = TRUE, return_metric = TRUE, plot_ma_dots = FALSE )

Arguments

  • DIR_NPLCM: File path to the folder containing posterior samples

  • stratum_bool: a vector of TRUE/FALSE with TRUE indicating the rows of subjects to include

  • slice: integer; specifies which slice of bronze-standard data to visualize; Default to 1.

  • plot_basis: TRUE for plotting basis functions; Default to FALSE

  • truth: a list of truths computed from true parameters in simulations; elements: Eti, FPR, PR_case,TPR; All default to NULL in real data analyses. Currently only works for one slice of bronze-standard measurements (in a non-nested model).

    • Eti matrix of # of rows = # of subjects, # columns: length(cause_list) for Eti
    • FPR matrix of # of rows = # of subjects, # columns: ncol(data_nplcm$Mobs$MBS$MBS1)
    • PR_case matrix of # of rows = # of subjects, # columns: ncol(data_nplcm$Mobs$MBS$MBS1)
    • TPR a vector of length identical to PR_case
  • RES_NPLCM: pre-read res_nplcm; default to NULL.

  • do_plot: TRUE for plotting

  • do_rug: TRUE for plotting

  • return_metric: TRUE for showing overall mean etiology, quantiles, s.d., and if truth$Eti is supplied, coverage, bias, truth and integrated mean squared errors (IMSE).

  • plot_ma_dots: plot moving averages among case and controls if TRUE; Default to FALSE.

Returns

A figure of etiology regression curves and some marginal positive rate assessment of model fit; See example for the legends.

References

See example figures

See Also

Other visualization functions: plot.nplcm(), plot_BrS_panel(), plot_SS_panel(), plot_check_common_pattern(), plot_check_pairwise_SLORD(), plot_etiology_strat(), plot_panels(), plot_pie_panel(), plot_subwt_regression()

  • Maintainer: Zhenke Wu
  • License: MIT + file LICENSE
  • Last published: 2024-01-30