plot_subwt_regression function

visualize the subclass weight regression with a continuous covariate

visualize the subclass weight regression with a continuous covariate

plot_subwt_regression( DIR_NPLCM, stratum_bool, case = 0, slice = 1, truth = NULL, RES_NPLCM = NULL )

Arguments

  • DIR_NPLCM: File path to the folder containing posterior samples

  • stratum_bool: a vector of TRUE/FALSE with TRUE indicating the rows of subjects to include

  • case: 1 for plotting cases, 0 for plotting controls; default to 0.

  • slice: integer; specifies which slice of bronze-standard data to visualize; Default to 1.

  • truth: a list of truths computed from true parameters in simulations; elements: Eti, FPR, PR_case,TPR; All default to NULL in real data analyses. Currently only works for one slice of bronze-standard measurements (in a non-nested model).

    • truth_subwt matrix of # of rows = # of subjects, # columns: number of true subclasses
  • RES_NPLCM: pre-read res_nplcm; default to NULL.

Returns

A figure of subclass regression curves

See Also

Other visualization functions: plot.nplcm(), plot_BrS_panel(), plot_SS_panel(), plot_check_common_pattern(), plot_check_pairwise_SLORD(), plot_etiology_regression(), plot_etiology_strat(), plot_panels(), plot_pie_panel()

  • Maintainer: Zhenke Wu
  • License: MIT + file LICENSE
  • Last published: 2024-01-30