bartDiag function

bartDiag

bartDiag

Displays a selection of diagnostic plots for a BART model.

bartDiag( model, data, response, burnIn = 0, threshold = "Youden", pNorm = FALSE, showInterval = TRUE, combineFactors = FALSE )

Arguments

  • model: a model created from either the BART, modelarts, or bartMachine package.
  • data: A dataframe used to build the model.
  • response: The name of the response for the fit.
  • burnIn: Trace plot will only show iterations above selected burn in value.
  • threshold: A dashed line on some plots to indicate a chosen threshold value (classification only). by default the Youden index is shown.
  • pNorm: apply pnorm to the y-hat data (classification only).
  • showInterval: LOGICAL if TRUE then show 5% and 95% quantile intervals on ROC an PC curves (classification only).
  • combineFactors: Whether or not to combine dummy variables (if present) in display.

Returns

A selection of diagnostic plots.

Examples

# For Regression # Generate Friedman data fData <- function(n = 200, sigma = 1.0, seed = 1701, nvar = 5) { set.seed(seed) x <- matrix(runif(n * nvar), n, nvar) colnames(x) <- paste0("x", 1:nvar) Ey <- 10 * sin(pi * x[, 1] * x[, 2]) + 20 * (x[, 3] - 0.5)^2 + 10 * x[, 4] + 5 * x[, 5] y <- rnorm(n, Ey, sigma) data <- as.data.frame(cbind(x, y)) return(data) } f_data <- fData(nvar = 10) x <- f_data[, 1:10] y <- f_data$y # Create dbarts model library(dbarts) set.seed(1701) dbartModel <- bart(x, y, ntree = 5, keeptrees = TRUE, nskip = 10, ndpost = 10) bartDiag(model = dbartModel, response = "y", burnIn = 100, data = f_data) # For Classification data(iris) iris2 <- iris[51:150, ] iris2$Species <- factor(iris2$Species) # Create dbarts model dbartModel <- bart(iris2[, 1:4], iris2[, 5], ntree = 5, keeptrees = TRUE, nskip = 10, ndpost = 10) bartDiag(model = dbartModel, data = iris2, response = iris2$Species)
  • Maintainer: Alan Inglis
  • License: GPL (>= 2)
  • Last published: 2024-07-24

Useful links