Plot the variable importance for a BART model with the 25
quantile.
vimpPlot(trees, type ="prop", plotType ="barplot", metric ="median")
Arguments
trees: A data frame created by extractTreeData function.
type: What value to return. Either the raw count 'count' or the proportions 'prop' averaged over iterations.
plotType: Which type of plot to return. Either a barplot 'barplot' with the quantiles shown as a line, a point plot with the quantiles shown as a gradient 'point', or a letter-value plot 'lvp'.
metric: Whether to show the 'mean' or 'median' importance values. Note, this has no effect when using plotType = 'lvp'.
Returns
A plot of variable importance.
Examples
if(requireNamespace("dbarts", quietly =TRUE)){# Load the dbarts package to access the bart function library(dbarts)# Get Data df <- na.omit(airquality)# Create Simple dbarts Model For Regression: set.seed(1701) dbartModel <- bart(df[2:6], df[,1], ntree =5, keeptrees =TRUE, nskip =10, ndpost =10)# Tree Data trees_data <- extractTreeData(model = dbartModel, data = df) vimpPlot(trees = trees_data, plotType ='point')}