Returns a matrix or list of matrices. If type = 'standard' a matrix filled with vivi values is returned. If type = 'vsup' two matrices are returned. One with the actual values and another matrix of uncertainty values. If type = 'quantiles', three matrices are returned. One for the 25
viviBartMatrix( trees, type ="standard", metric ="propMean", metricError ="CV", reorder =FALSE)
Arguments
trees: A data frame created by extractTreeData function.
type: Which type of matrix to return. Either 'standard', 'vsup', 'quantiles'
metric: Which metric to use to fill the actual values matrix. Either 'propMean' or 'count'.
metricError: Which metric to use to fill the uncertainty matrix. Either 'SD', 'CV' or 'SE'.
reorder: LOGICAL. If TRUE then the matrix is reordered so high values are pushed to the top left.
Returns
A heatmap plot showing variable importance on the diagonal and variable interaction on the off-diagonal.
Examples
if(requireNamespace("dbarts", quietly =TRUE)){# Load the dbarts package to access the bart function library(dbarts)# Get Data df <- na.omit(airquality)# Create Simple dbarts Model For Regression: set.seed(1701) dbartModel <- bart(df[2:6], df[,1], ntree =5, keeptrees =TRUE, nskip =10, ndpost =10)# Tree Data trees_data <- extractTreeData(model = dbartModel, data = df)# VSUP Matrix vsupMat <- viviBartMatrix(trees = trees_data, type ='vsup', metric ='propMean', metricError ='CV')}