ovbias_par function

Compute bias adjusted treatment effect taking data frame as input.

Compute bias adjusted treatment effect taking data frame as input.

ovbias_par( data, outcome, treatment, control, other_regressors = NULL, deltalow, deltahigh, Rhigh, e )

Arguments

  • data: Data frame.
  • outcome: Outcome variable.
  • treatment: Treatment variable.
  • control: Control variables to add in the intermediate regression.
  • other_regressors: Subset of control variables to add in the short regression (default is NULL).
  • deltalow: The lower limit of delta.
  • deltahigh: The upper limit of delta.
  • Rhigh: The upper limit of Rmax.
  • e: The step size.

Returns

List with three elements:

  • Data: Data frame containing the bias and bias-adjusted treatment effect for each point on the grid

  • bias_Distribution: Quantiles (2.5,5.0,50,95,97.5) of the empirical distribution of bias

  • bstar_Distribution: Quantiles (2.5,5.0,50,95,97.5) of the empirical distribution of the bias-adjusted treatment effect

Examples

## Load data set data("NLSY_IQ") ## Set parameters for bounded box Rhigh <- 0.61 deltalow <- 0.01 deltahigh <- 0.99 e <- 0.01 ## Not run: ## Compute bias and bias-adjusted treatment effect OVB_par <- ovbias_par(data=NLSY_IQ, outcome="iq_std",treatment="BF_months", control=c("age","sex","income","motherAge","motherEDU","mom_married","race"), other_regressors = c("sex","age"), deltalow=deltalow, deltahigh=deltahigh, Rhigh=Rhigh, e=e) ## Default quantiles of bias OVB_par$bias_Distribution # Default quantiles of bias-adjusted treatment effect OVB_par$bstar_Distribution ## End(Not run)
  • Maintainer: Deepankar Basu
  • License: MIT + file LICENSE
  • Last published: 2022-03-28