Compute bias adjusted treatment effect taking data frame as input.
ovbias_par( data, outcome, treatment, control, other_regressors = NULL, deltalow, deltahigh, Rhigh, e )
data
: Data frame.outcome
: Outcome variable.treatment
: Treatment variable.control
: Control variables to add in the intermediate regression.other_regressors
: Subset of control variables to add in the short regression (default is NULL).deltalow
: The lower limit of delta.deltahigh
: The upper limit of delta.Rhigh
: The upper limit of Rmax.e
: The step size.List with three elements:
Data: Data frame containing the bias and bias-adjusted treatment effect for each point on the grid
bias_Distribution: Quantiles (2.5,5.0,50,95,97.5) of the empirical distribution of bias
bstar_Distribution: Quantiles (2.5,5.0,50,95,97.5) of the empirical distribution of the bias-adjusted treatment effect
## Load data set data("NLSY_IQ") ## Set parameters for bounded box Rhigh <- 0.61 deltalow <- 0.01 deltahigh <- 0.99 e <- 0.01 ## Not run: ## Compute bias and bias-adjusted treatment effect OVB_par <- ovbias_par(data=NLSY_IQ, outcome="iq_std",treatment="BF_months", control=c("age","sex","income","motherAge","motherEDU","mom_married","race"), other_regressors = c("sex","age"), deltalow=deltalow, deltahigh=deltahigh, Rhigh=Rhigh, e=e) ## Default quantiles of bias OVB_par$bias_Distribution # Default quantiles of bias-adjusted treatment effect OVB_par$bstar_Distribution ## End(Not run)