b_bootstrap function

b_bootstrap

b_bootstrap

Performs a Bayesian bootstrap and returns a sample of size n1 representing the posterior distribution of the statistic. Returns a vector if the statistic is one-dimensional (like for mean(...)) or a data.frame if the statistic is multi-dimensional (like for the coefficients of lm).

b_bootstrap( data, statistic, n1 = 1000, n2 = 1000, use_weights = FALSE, weight_arg = NULL, ... )

Arguments

  • data: The data as either a vector, matrix or data.frame.
  • statistic: A function that accepts data as its first argument and if use_weights is TRUE the weights as its second argument. Function should return a numeric vector.
  • n1: The size of the bootstrap sample (default = 1000).
  • n2: The sample size used to calculate the statistic each bootstrap draw (default = 1000).
  • use_weights: Whether the statistic function accepts a weight argument or should be calculated using resampled data (default = FALSE).
  • weight_arg: If the statistic function includes a named argument for the weights this could be specified here (default = NULL).
  • ...: Further arguments passed on to the statistic function.

Returns

A data frame containing bootstrap samples.

Examples

# linear function of seqence vs. response lm_statistic <- function(data) { lm(sequence ~ response, data)$coef } # load data data <- adaptation_level_small # bootstrap data_bootstrap <- b_bootstrap(data, lm_statistic, n1 = 1000, n2 = 1000)

References

https://www.sumsar.net/blog/2015/07/easy-bayesian-bootstrap-in-r/

Rubin, D. B. (1981). The Bayesian Bootstrap. The annals of statistics, 9(1), 130-134.

Author(s)

Rasmus Baath

  • Maintainer: Jure Demšar
  • License: GPL (>= 3)
  • Last published: 2023-09-29