b_color function

b_color

b_color

Bayesian model for comparing colors.

b_color( colors, priors = NULL, hsv = FALSE, warmup = 1000, iter = 2000, chains = 4, seed = NULL, refresh = NULL, control = NULL, suppress_warnings = TRUE )

Arguments

  • colors: a data frame of colors either in RGB or HSV format. The first column should be the R (or H) component, the second column should be the G (or S) component and the third column should be the B (or V) component.
  • priors: List of parameters and their priors - b_prior objects. You can put a prior on the mu_r (mean r component), sigma_r (variance of mu_r), mu_g (mean g component), sigma_g (variance of mu_g), mu_b (mean b component), sigma_b (variance of mu_b), mu_h (mean h component), kappa_h (variance of mu_h), mu_s (mean s component), sigma_s (variance of mu_s), mu_v (mean v component) and sigma_v (variance of mu_v) parameters (default = NULL).
  • hsv: set to TRUE if colors are provided in HSV format (default = FALSE).
  • warmup: Integer specifying the number of warmup iterations per chain (default = 1000).
  • iter: Integer specifying the number of iterations (including warmup, default = 2000).
  • chains: Integer specifying the number of parallel chains (default = 4).
  • seed: Random number generator seed (default = NULL).
  • refresh: Frequency of output (default = NULL).
  • control: A named list of parameters to control the sampler's behavior (default = NULL).
  • suppress_warnings: Suppress warnings returned by Stan (default = TRUE).

Returns

An object of class color_class

Examples

# priors for rgb mu_prior <- b_prior(family="uniform", pars=c(0, 255)) sigma_prior <- b_prior(family="uniform", pars=c(0, 100)) # attach priors to relevant parameters priors_rgb <- list(c("mu_r", mu_prior), c("sigma_r", sigma_prior), c("mu_g", mu_prior), c("sigma_g", sigma_prior), c("mu_b", mu_prior), c("sigma_b", sigma_prior)) # generate data (rgb) r <- as.integer(rnorm(100, mean=250, sd=20)) r[r > 255] <- 255 r[r < 0] <- 0 g <- as.integer(rnorm(100, mean=20, sd=20)) g[g > 255] <- 255 g[g < 0] <- 0 b <- as.integer(rnorm(100, mean=40, sd=20)) b[b > 255] <- 255 b[b < 0] <- 0 colors_rgb <- data.frame(r=r, g=g, b=b) # fit fit_rgb <- b_color(colors=colors_rgb, priors=priors_rgb, chains=1) # priors for hsv h_prior <- b_prior(family="uniform", pars=c(0, 2*pi)) sv_prior <- b_prior(family="uniform", pars=c(0, 1)) kappa_prior <- b_prior(family="uniform", pars=c(0, 500)) sigma_prior <- b_prior(family="uniform", pars=c(0, 1)) # attach priors to relevant parameters priors_hsv <- list(c("mu_h", h_prior), c("kappa_h", kappa_prior), c("mu_s", sv_prior), c("sigma_s", sigma_prior), c("mu_v", sv_prior), c("sigma_v", sigma_prior)) # generate data (hsv) h <- rnorm(100, mean=2*pi/3, sd=0.5) h[h > 2*pi] <- 2*pi h[h < 0] <- 0 s <- rnorm(100, mean=0.9, sd=0.2) s[s > 1] <- 1 s[s < 0] <- 0 v <- rnorm(100, mean=0.9, sd=0.2) v[v > 1] <- 1 v[v < 0] <- 0 colors_hsv <- data.frame(h=h, s=s, v=v) # fit fit_hsv <- b_color(colors=colors_hsv, hsv=TRUE, priors=priors_hsv, chains=1)
  • Maintainer: Jure Demšar
  • License: GPL (>= 3)
  • Last published: 2023-09-29