b_reaction_time function

b_reaction_time

b_reaction_time

Bayesian model for comparing reaction times.

b_reaction_time( t, s, priors = NULL, warmup = 1000, iter = 2000, chains = 4, seed = NULL, refresh = NULL, control = NULL, suppress_warnings = TRUE )

Arguments

  • t: a vector containing reaction times for each measurement.
  • s: a vector containing subject indexes. Starting index should be 1 and the largest subject index should equal the number of subjects.
  • priors: List of parameters and their priors - b_prior objects. You can put a prior on the mu_m (mean), sigma_m (variance of mu_m), mu_s (variance), sigma_s (variance of mu_s), mu_l (mean of the exponent factor) and sigma_l (variance of mu_l) parameters (default = NULL).
  • warmup: Integer specifying the number of warmup iterations per chain (default = 1000).
  • iter: Integer specifying the number of iterations (including warmup, default = 2000).
  • chains: Integer specifying the number of parallel chains (default = 4).
  • seed: Random number generator seed (default = NULL).
  • refresh: Frequency of output (default = NULL).
  • control: A named list of parameters to control the sampler's behavior (default = NULL).
  • suppress_warnings: Suppress warnings returned by Stan (default = TRUE).

Returns

An object of class reaction_time_class

Examples

# priors mu_prior <- b_prior(family="normal", pars=c(0, 100)) sigma_prior <- b_prior(family="uniform", pars=c(0, 500)) lambda_prior <- b_prior(family="uniform", pars=c(0.05, 5)) # attach priors to relevant parameters priors <- list(c("mu_m", mu_prior), c("sigma_m", sigma_prior), c("mu_s", sigma_prior), c("sigma_s", sigma_prior), c("mu_l", lambda_prior), c("sigma_l", sigma_prior)) # generate data s <- rep(1:5, 20) rt <- emg::remg(100, mu=10, sigma=1, lambda=0.4) # fit fit <- b_reaction_time(t=rt, s=s, priors=priors, chains=1)
  • Maintainer: Jure Demšar
  • License: GPL (>= 3)
  • Last published: 2023-09-29