b_success_rate function

b_success_rate

b_success_rate

Bayesian model for comparing test success rate.

b_success_rate( r, s, priors = NULL, warmup = 1000, iter = 2000, chains = 4, seed = NULL, refresh = NULL, control = NULL, suppress_warnings = TRUE )

Arguments

  • r: a vector containing test results (0 - test was not solved successfully, 1 - test was solved successfully).
  • s: a vector containing subject indexes. Starting index should be 1 and the largest subject index should equal the number of subjects.
  • priors: List of parameters and their priors - b_prior objects. You can put a prior on the p (mean probability of success) and tau (variance) parameters (default = NULL).
  • warmup: Integer specifying the number of warmup iterations per chain (default = 1000).
  • iter: Integer specifying the number of iterations (including warmup, default = 2000).
  • chains: Integer specifying the number of parallel chains (default = 4).
  • seed: Random number generator seed (default = NULL).
  • refresh: Frequency of output (default = NULL).
  • control: A named list of parameters to control the sampler's behavior (default = NULL).
  • suppress_warnings: Suppress warnings returned by Stan (default = TRUE).

Returns

An object of class success_rate_class.

Examples

# priors p_prior <- b_prior(family="beta", pars=c(1, 1)) tau_prior <- b_prior(family="uniform", pars=c(0, 500)) # attach priors to relevant parameters priors <- list(c("p", p_prior), c("tau", tau_prior)) # generate data s <- rep(1:5, 20) data <- rbinom(100, size=1, prob=0.6) # fit fit <- b_success_rate(r=data, s=s, priors=priors, chains=1)
  • Maintainer: Jure Demšar
  • License: GPL (>= 3)
  • Last published: 2023-09-29