logLikDccGarch function

The logarithm of likelihood function of DCC-GARCH(1,1) Model.

The logarithm of likelihood function of DCC-GARCH(1,1) Model.

Compute the logarithm of likelihood function of DCC-GARCH(1,1) Model if mY is a matrix or the logarithm of likelihood function of GARCH(1,1) Model if mY is numeric vector.

logLikDccGarch(mY, omega = rep(0.03, ncol(mY)), alpha = rep(0.03, ncol(mY)), beta = rep(0.8, ncol(mY)), a = 0.03, b = 0.8, gamma = rep(1, ncol(mY)), tail = 10, errorDist = 2)

Arguments

  • mY: a matrix of the data (n×kn \times k).
  • omega: a numeric vector (k×1k \times 1) with the the values of ωi\omega_i parameters. Default: rep(0.03, ncol(mY)).
  • alpha: a numeric vector (k×1k \times 1) with the the values of αi\alpha_i parameters. Default: rep(0.03, ncol(mY)).
  • beta: a numeric vector (k×1k \times 1) with the the values of βi\beta_i parameters. Default: rep(0.80, ncol(mY)).
  • a: a numeric value of the aa parameter. Default: 0.03.
  • b: a numeric value of the bb parameter. Default: 0.8.
  • gamma: a numeric vector (k×1k \times 1) with the values of γi\gamma_i parameters. Default: rep(1.0, ncol(mY)).
  • tail: a numeric value of ν\nu parameter if errorDist = 2 or of δ\delta parameter if errorDist = 3. If errorDist = 1 so this arguments is no used.
  • errorDist: a probability distribution for errors. Use errorDist=1 for SSNormSSNorm, errorDist=2 for SSTSST or errorDist=3 for SSGEDSSGED. Default: 2.

Details

The log-likelihood of the model GARCH(1,1) is computed if mY has just one column. The arguments a and b are not consider in this case.

Returns

Return a list with the elements: - **H:amatrixwherethelinesaretheH**: a matrix where the lines are the H_t$ values for t=1,...,n.

  • $value: the value of the logarithm of likelihood function.

References

Fioruci, J.A., Ehlers, R.S., Andrade Filho, M.G. Bayesian multivariate GARCH models with dynamic correlations and asymmetric error distributions, Journal of Applied Statistics, 41(2), 320--331, 2014a. doi:10.1080/02664763.2013.839635

Fioruci, J.A., Ehlers, R.S., Louzada, F. BayesDccGarch - An Implementation of Multivariate GARCH DCC Models, ArXiv e-prints, 2014b. https://ui.adsabs.harvard.edu/abs/2014arXiv1412.2967F/abstract.

Author(s)

Jose Augusto Fiorucci, Ricardo Sandes Ehlers and Francisco Louzada

See Also

bayesDccGarch-package, bayesDccGarch

Examples

data(DaxCacNik) Dax = DaxCacNik[,1] ###### log-likelihood function of GARCH(1,1) model with SST innovations #### logLikDccGarch(Dax, omega=0.03, alpha=0.03, beta=0.8, gamma=0.7)$value ###### log-likelihood function of DCC-GARCH(1,1) model with SST innovations #### logLikDccGarch(DaxCacNik, beta=c(0.82,0.91,0.85), gamma=c(0.7, 1.3, 1.7), tail=10)$value