Posterior predictive samples from models fit by bayesGAM
Posterior predictive samples from models fit by bayesGAM
Draw from the posterior predictive distribution
posterior_predict(object,...)## S4 method for signature 'bayesGAMfit'posterior_predict(object, draws =NULL,...)## S4 method for signature 'glmModel'posterior_predict(object, draws =NULL, results =NULL,...)
Arguments
object: Object of type bayesGAMfit generated from bayesGAM.
...: Additional arguments for postrior_predict
draws: An integer indicating the number of draws to return. The default and maximum number of draws is the size of the posterior sample.
results: Matrix of HMC posterior samples
Returns
a list of D by N matrices, where D is the number of draws from the posterior predictive distribution and N is the number of data points being predicted per draw.
Examples
f <- bayesGAM(weight ~ np(height), data = women, family = gaussian, iter=1000, chains =1)res <- posterior_predict(f, draws=100)
References
Goodrich B, Gabry J, Ali I & Brilleman S. (2020). rstanarm: Bayesian applied regression modeling via Stan. R package version 2.19.3 https://mc-stan.org/rstanarm.