Bayesian Methods for State Space Models
Create Tuning Control Parameters
Internal function to back-transform parameters
Helper function to validate input of user-defined functions and priors
Internal function to compute the Jacobian of the transformation
Pilot Run for Particle Filter Tuning
Internal Resampling Functions
Run Pilot Chain for Posterior Estimation
Internal function to transform parameters
Estimate effective sample size (ESS) of MCMC chains.
Particle Filter
Particle Marginal Metropolis-Hastings (PMMH) for State-Space Models
Print method for PMMH output
Compute split Rhat statistic
Print method for PMMH output
Implements methods for Bayesian analysis of State Space Models. Includes implementations the Particle Marginal Metropolis-Hastings algorithm described in Andrieu et al. (2010) <doi:10.1111/j.1467-9868.2009.00736.x> and automatic tuning inspired by Pitt et al. (2012) <doi:10.1016/j.jeconom.2012.06.004> and J. Dahlin and T. B. Schön (2019) <doi:10.18637/jss.v088.c02>.
Useful links