bayesplot1.11.1 package

Plotting for Bayesian Models

available_ppc

Get or view the names of available plotting or data functions

bayesplot-colors

Set, get, or view bayesplot color schemes

bayesplot-extractors

Extract quantities needed for plotting from model objects

bayesplot-helpers

Convenience functions for adding or changing plot details

bayesplot-package

bayesplot : Plotting for Bayesian Models

bayesplot_grid

Arrange plots in a grid

bayesplot_theme_get

Get, set, and modify the active bayesplot theme

example-data

Example draws to use in demonstrations and tests

MCMC-combos

Combination plots

MCMC-diagnostics

General MCMC diagnostics

MCMC-distributions

Histograms and kernel density plots of MCMC draws

MCMC-intervals

Plot interval estimates from MCMC draws

MCMC-nuts

Diagnostic plots for the No-U-Turn-Sampler (NUTS)

MCMC-overview

Plots for Markov chain Monte Carlo simulations

MCMC-parcoord

Parallel coordinates plot of MCMC draws

MCMC-recover

Compare MCMC estimates to "true" parameter values

MCMC-scatterplots

Scatterplots of MCMC draws

MCMC-traces

Trace and rank plots of MCMC draws

pp_check

Posterior (or prior) predictive checks (S3 generic and default method)

PPC-censoring

PPC censoring

PPC-discrete

PPCs for discrete outcomes

PPC-distributions

PPC distributions

PPC-errors

PPC errors

PPC-intervals

PPC intervals

PPC-loo

LOO predictive checks

PPC-overview

Graphical posterior predictive checking

PPC-scatterplots

PPC scatterplots

PPC-test-statistics

PPC test statistics

PPD-distributions

PPD distributions

PPD-intervals

PPD intervals

PPD-overview

Plots of posterior or prior predictive distributions

PPD-test-statistics

PPD test statistics

reexports

Objects exported from other packages

theme_default

Default bayesplot plotting theme

tidy-params

Tidy parameter selection

Plotting functions for posterior analysis, MCMC diagnostics, prior and posterior predictive checks, and other visualizations to support the applied Bayesian workflow advocated in Gabry, Simpson, Vehtari, Betancourt, and Gelman (2019) <doi:10.1111/rssa.12378>. The package is designed not only to provide convenient functionality for users, but also a common set of functions that can be easily used by developers working on a variety of R packages for Bayesian modeling, particularly (but not exclusively) packages interfacing with 'Stan'.

  • Maintainer: Jonah Gabry
  • License: GPL (>= 3)
  • Last published: 2024-02-15