Consider a Beta-Binomial Bayesian model for parameter π with a Beta(alpha, beta) prior on π and Binomial likelihood with n trials and y successes. Given information on the prior (alpha and data) and data (y and n), this function produces a plot of any combination of the corresponding prior pdf, scaled likelihood function, and posterior pdf. All three are included by default.
plot_beta_binomial( alpha, beta, y =NULL, n =NULL, prior =TRUE, likelihood =TRUE, posterior =TRUE)
Arguments
alpha, beta: positive shape parameters of the prior Beta model
y: observed number of successes
n: observed number of trials
prior: a logical value indicating whether the prior model should be plotted
likelihood: a logical value indicating whether the scaled likelihood should be plotted
posterior: a logical value indicating whether posterior model should be plotted
Returns
a ggplot
Examples
plot_beta_binomial(alpha =1, beta =13, y =25, n =50)plot_beta_binomial(alpha =1, beta =13, y =25, n =50, posterior =FALSE)