plot_normal_normal function

Plot a Normal-Normal Bayesian model

Plot a Normal-Normal Bayesian model

Consider a Normal-Normal Bayesian model for mean parameter μ\mu with a N(mean, sd^2) prior on μ\mu and a Normal likelihood for the data. Given information on the prior (mean and sd) and data (the sample size n, mean y_bar, and standard deviation sigma), this function produces a plot of any combination of the corresponding prior pdf, scaled likelihood function, and posterior pdf. All three are included by default.

plot_normal_normal( mean, sd, sigma = NULL, y_bar = NULL, n = NULL, prior = TRUE, likelihood = TRUE, posterior = TRUE )

Arguments

  • mean: mean of the Normal prior
  • sd: standard deviation of the Normal prior
  • sigma: standard deviation of the data, or likelihood standard deviation
  • y_bar: sample mean of the data
  • n: sample size of the data
  • prior: a logical value indicating whether the prior model should be plotted
  • likelihood: a logical value indicating whether the scaled likelihood should be plotted
  • posterior: a logical value indicating whether posterior model should be plotted

Returns

a ggplot

Examples

plot_normal_normal(mean = 0, sd = 3, sigma= 4, y_bar = 5, n = 3) plot_normal_normal(mean = 0, sd = 3, sigma= 4, y_bar = 5, n = 3, posterior = FALSE)