Consider a Normal-Normal Bayesian model for mean parameter μ with a N(mean, sd^2) prior on μ and a Normal likelihood for the data. Given information on the prior (mean and sd) and data (the sample size n, mean y_bar, and standard deviation sigma), this function summarizes the mean, mode, and variance of the prior and posterior Normal models of μ.
summarize_normal_normal(mean, sd, sigma =NULL, y_bar =NULL, n =NULL)
Arguments
mean: mean of the Normal prior
sd: standard deviation of the Normal prior
sigma: standard deviation of the data, or likelihood standard deviation
y_bar: sample mean of the data
n: sample size of the data
Returns
data frame
Examples
summarize_normal_normal(mean =2.3, sd =0.3, sigma =5.1, y_bar =128.5, n =20)