Obtain likelihood estimates of gappy Gaussian time series
Obtain likelihood estimates of gappy Gaussian time series
Obtain likelihood of gappy standardized Gaussian time series "x" sampled at times "t" given parameter "rho" (autocorrelation). Alternatively computes the characteristic time scale "tau".
Arguments
x: Time series
t: Sampling times
rho: Auto-correlation
tau: logical: Whether or not to compute characteristic time scale instead of rho.
Returns
Returns the log-likelihood of the data.
Examples
# simulate autocorrelated time series rho.true <-0.8 x.full <- arima.sim(1000, model=list(ar = rho.true)) t.full <-1:1000# subsample time series keep <- sort(sample(1:1000,200)) x <- x.full[keep] t <- t.full[keep] plot(t,x, type="l")# Obtain MLE of rho rhos <- seq(0,.99,.01) L <- sapply(rhos,function(r) GetL(x, t, r)) rho.hat <- rhos[which.max(L)] plot(rhos, L, type ="l") abline(v = c(rho.true, rho.hat), lty=3:2, lwd=2) legend("bottomleft", legend=c("true value","MLE"), lty=3:2, lwd=2, title = expression(rho))# Why tau is better tau.true <--1/log(rho.true) taus <- seq(1,10,.1) L <- sapply(taus,function(r) GetL(x, t, r, tau =TRUE)) tau.hat <- taus[which.max(L)] plot(taus, L, type ="l") abline(v = c(tau.true, tau.hat), lty=3:2, lwd=2) legend("bottomleft", legend=c("true value","MLE"), lty=3:2, lwd=2, title = expression(tau))