GetL function

Obtain likelihood estimates of gappy Gaussian time series

Obtain likelihood estimates of gappy Gaussian time series

Obtain likelihood of gappy standardized Gaussian time series "x" sampled at times "t" given parameter "rho" (autocorrelation). Alternatively computes the characteristic time scale "tau".

Arguments

  • x: Time series
  • t: Sampling times
  • rho: Auto-correlation
  • tau: logical: Whether or not to compute characteristic time scale instead of rho.

Returns

Returns the log-likelihood of the data.

Examples

# simulate autocorrelated time series rho.true <- 0.8 x.full <- arima.sim(1000, model=list(ar = rho.true)) t.full <- 1:1000 # subsample time series keep <- sort(sample(1:1000, 200)) x <- x.full[keep] t <- t.full[keep] plot(t,x, type="l") # Obtain MLE of rho rhos <- seq(0,.99,.01) L <- sapply(rhos, function(r) GetL(x, t, r)) rho.hat <- rhos[which.max(L)] plot(rhos, L, type = "l") abline(v = c(rho.true, rho.hat), lty=3:2, lwd=2) legend("bottomleft", legend=c("true value","MLE"), lty=3:2, lwd=2, title = expression(rho)) # Why tau is better tau.true <- -1/log(rho.true) taus <- seq(1,10,.1) L <- sapply(taus, function(r) GetL(x, t, r, tau = TRUE)) tau.hat <- taus[which.max(L)] plot(taus, L, type = "l") abline(v = c(tau.true, tau.hat), lty=3:2, lwd=2) legend("bottomleft", legend=c("true value","MLE"), lty=3:2, lwd=2, title = expression(tau))

See Also

Core function of BCPA, used directly in GetRho

Author(s)

Eliezer Gurarie

  • Maintainer: Eliezer Gurarie
  • License: Unlimited
  • Last published: 2022-05-30

Useful links