BetaR function

Create a Beta Regression Distribution

Create a Beta Regression Distribution

Class and methods for beta distributions in regression specification using the workflow from the distributions3 package.

BetaR(mu, phi)

Arguments

  • mu: numeric. The mean of the beta distribution.
  • phi: numeric. The precision parameter of the beta distribution.

Details

Alternative parameterization of the classic beta distribution in terms of its mean mu and precision parameter phi. Thus, the distribution provided by BetaR is equivalent to the Beta distribution with parameters alpha = mu * phi and beta = (1 - mu) * phi.

Returns

A BetaR distribution object.

See Also

dbetar, Beta

Examples

## package and random seed library("distributions3") set.seed(6020) ## three beta distributions X <- BetaR( mu = c(0.25, 0.50, 0.75), phi = c(1, 1, 2) ) X ## compute moments of the distribution mean(X) variance(X) skewness(X) kurtosis(X) ## support interval (minimum and maximum) support(X) ## simulate random variables random(X, 5) ## histograms of 1,000 simulated observations x <- random(X, 1000) hist(x[1, ]) hist(x[2, ]) hist(x[3, ]) ## probability density function (PDF) and log-density (or log-likelihood) x <- c(0.25, 0.5, 0.75) pdf(X, x) pdf(X, x, log = TRUE) log_pdf(X, x) ## cumulative distribution function (CDF) cdf(X, x) ## quantiles quantile(X, 0.5) ## cdf() and quantile() are inverses (except at censoring points) cdf(X, quantile(X, 0.5)) quantile(X, cdf(X, 1)) ## all methods above can either be applied elementwise or for ## all combinations of X and x, if length(X) = length(x), ## also the result can be assured to be a matrix via drop = FALSE p <- c(0.05, 0.5, 0.95) quantile(X, p, elementwise = FALSE) quantile(X, p, elementwise = TRUE) quantile(X, p, elementwise = TRUE, drop = FALSE) ## compare theoretical and empirical mean from 1,000 simulated observations cbind( "theoretical" = mean(X), "empirical" = rowMeans(random(X, 1000)) )