This function verifies the input time series list and copies the data into a BIMETS model object. Provided time series must be BIMETS compliant, as defined in is.bimets
modelData: The input time series list containing endogenous and exogenous data (see example).
quietly: If TRUE, information messages will be suppressed.
...: Backward compatibility.
Returns
This function add two new named element, i.e. modelData and frequency, into the output model object.
The new modelData element is a named list that contains all the input time series. Each element name of this list is set equal to the name of the endogenous or exogenous variable the time series data refer to.
The new frequency element is an integer that represent the frequency of the time series model data.
See Also
MDL
LOAD_MODEL
ESTIMATE
SIMULATE
STOCHSIMULATE
MULTMATRIX
RENORM
TIMESERIES
BIMETS indexing
BIMETS configuration
Examples
#define model datamyModelData<-list( cn
=TIMESERIES(39.8,41.9,45,49.2,50.6,52.6,55.1,56.2,57.3,57.8,55,50.9,45.6,46.5,48.7,51.3,57.7,58.7,57.5,61.6,65,69.7, START=c(1920,1),FREQ=1), g
=TIMESERIES(4.6,6.6,6.1,5.7,6.6,6.5,6.6,7.6,7.9,8.1,9.4,10.7,10.2,9.3,10,10.5,10.3,11,13,14.4,15.4,22.3, START=c(1920,1),FREQ=1), i
=TIMESERIES(2.7,-.2,1.9,5.2,3,5.1,5.6,4.2,3,5.1,1,-3.4,-6.2,-5.1,-3,-1.3,2.1,2,-1.9,1.3,3.3,4.9, START=c(1920,1),FREQ=1), k
=TIMESERIES(182.8,182.6,184.5,189.7,192.7,197.8,203.4,207.6,210.6,215.7,216.7,213.3,207.1,202,199,197.7,199.8,201.8,199.9,201.2,204.5,209.4, START=c(1920,1),FREQ=1), p
=TIMESERIES(12.7,12.4,16.9,18.4,19.4,20.1,19.6,19.8,21.1,21.7,15.6,11.4,7,11.2,12.3,14,17.6,17.3,15.3,19,21.1,23.5, START=c(1920,1),FREQ=1), w1
=TIMESERIES(28.8,25.5,29.3,34.1,33.9,35.4,37.4,37.9,39.2,41.3,37.9,34.5,29,28.5,30.6,33.2,36.8,41,38.2,41.6,45,53.3, START=c(1920,1),FREQ=1), y
=TIMESERIES(43.7,40.6,49.1,55.4,56.4,58.7,60.3,61.3,64,67,57.7,50.7,41.3,45.3,48.9,53.3,61.8,65,61.2,68.4,74.1,85.3, START=c(1920,1),FREQ=1), t
=TIMESERIES(3.4,7.7,3.9,4.7,3.8,5.5,7,6.7,4.2,4,7.7,7.5,8.3,5.4,6.8,7.2,8.3,6.7,7.4,8.9,9.6,11.6, START=c(1920,1),FREQ=1), time
=TIMESERIES(NA,-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10, START=c(1920,1),FREQ=1), w2
=TIMESERIES(2.2,2.7,2.9,2.9,3.1,3.2,3.3,3.6,3.7,4,4.2,4.8,5.3,5.6,6,6.1,7.4,6.7,7.7,7.8,8,8.5, START=c(1920,1),FREQ=1))#define modelmyModelDefinition<-"MODEL
COMMENT> Modified Klein Model 1 of the U.S. Economy with PDL,COMMENT> autocorrelation on errors, restrictions and conditional evaluations
COMMENT> Consumption
BEHAVIORAL> cn
TSRANGE 1925119411EQ> cn = a1 + a2*p + a3*TSLAG(p,1)+ a4*(w1+w2)COEFF> a1 a2 a3 a4
ERROR> AUTO(2)COMMENT> Investment
BEHAVIORAL> i
TSRANGE 1923119411EQ> i = b1 + b2*p + b3*TSLAG(p,1)+ b4*TSLAG(k,1)COEFF> b1 b2 b3 b4
RESTRICT> b2 + b3 =1COMMENT> Demand for Labor
BEHAVIORAL> w1
TSRANGE 1925119411EQ> w1 = c1 + c2*(y+t-w2)+ c3*TSLAG(y+t-w2,1)+c4*time
COEFF> c1 c2 c3 c4
PDL> c3 13COMMENT> Gross National Product
IDENTITY> y
EQ> y = cn + i + g - t
COMMENT> Profits
IDENTITY> p
EQ> p = y -(w1+w2)COMMENT> Capital Stock with switches
IDENTITY> k
EQ> k = TSLAG(k,1)+ i
IF> i >0IDENTITY> k
EQ> k = TSLAG(k,1)IF> i <=0
END"
#load model myModel<-LOAD_MODEL(modelText=myModelDefinition)#load data into the modelmyModel<-LOAD_MODEL_DATA(myModel,myModelData,showWarnings =TRUE)#Load model data "myModelData" into model "myModelDefinition"...#CHECK_MODEL_DATA(): warning, there are missing values in series "time".#...LOAD MODEL DATA OK#retrieve data from model objectmyModel$modelData$cn
#Time Series:#Start = 1920 #End = 1941 #Frequency = 1 # [1] 39.8 41.9 45.0 49.2 50.6 52.6 55.1 56.2 57.3 #57.8 55.0 50.9 45.6 46.5 48.7 51.3 57.7 58.7 57.5 61.6#[21] 65.0 69.7myModel$modelData$w1
#Time Series:#Start = 1920 #End = 1941 #Frequency = 1 # [1] 28.8 25.5 29.3 34.1 33.9 35.4 37.4 37.9 39.2 #41.3 37.9 34.5 29.0 28.5 30.6 33.2 36.8 41.0 38.2 41.6#[21] 45.0 53.3myModel$modelData$i
#Time Series:#Start = 1920 #End = 1941 #Frequency = 1 # [1] 2.7 -0.2 1.9 5.2 3.0 5.1 5.6 4.2 3.0 5.1 #1.0 -3.4 -6.2 -5.1 -3.0 -1.3 2.1 2.0 -1.9 1.3#[21] 3.3 4.9myModel$modelData$time
#Time Series:#Start = 1920 #End = 1941 #Frequency = 1 # [1] NA -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 #0 1 2 3 4 5 6 7 8 9 10