binaryGP0.2 package

Fit and Predict a Gaussian Process Model with (Time-Series) Binary Response

Allows the estimation and prediction for binary Gaussian process model. The mean function can be assumed to have time-series structure. The estimation methods for the unknown parameters are based on penalized quasi-likelihood/penalized quasi-partial likelihood and restricted maximum likelihood. The predicted probability and its confidence interval are computed by Metropolis-Hastings algorithm. More details can be seen in Sung et al (2017) <arXiv:1705.02511>.

  • Maintainer: Chih-Li Sung
  • License: GPL-2 | GPL-3
  • Last published: 2017-09-19