estgtp function

Bayesian MCMC estimation of parameters of generalized Thomas process

Bayesian MCMC estimation of parameters of generalized Thomas process

Bayesian MCMC estimation of parameters of generalized Thomas process. The cluster size is allowed to have a variance that is greater or less than the expected value (cluster sizes are over or under dispersed).

estgtp( X, kappa0 = exp(a_kappa + ((b_kappa^2)/2)), omega0 = exp(a_omega + ((b_omega^2)/2)), lambda0 = (l_lambda + u_lambda)/2, theta0 = exp(a_theta + ((b_theta^2)/2)), skappa, somega, dlambda, stheta, smove, a_kappa, b_kappa, a_omega, b_omega, l_lambda, u_lambda, a_theta, b_theta, iter = 5e+05, plot.step = 1000, save.step = 1000, filename )

Arguments

  • X: A point pattern dataset (object of class ppp) to which the model should be fitted.
  • kappa0: Initial value for kappa, by default it will be set as expectation of prior for kappa.
  • omega0: Initial value for omega, by default it will be set as expectation of prior for omega.
  • lambda0: Initial value for lambda, by default it will be set as expectation of prior for lambda.
  • theta0: Initial value for theta, by default it will be set as expectation of prior for theta.
  • skappa: variability of proposal for kappa: second parameter of log-normal distribution
  • somega: variability of proposal for omega: second parameter of log-normal distribution
  • dlambda: variability of proposal for lambda: half of range of uniform distribution
  • stheta: variability of proposal for theta: second parameter of log-normal distribution
  • smove: variability of proposal for moving center point: SD of normal distribution
  • a_kappa: First parameter of prior distribution for kappa, which is log-normal distribution.
  • b_kappa: Second parameter of prior distribution for kappa, which is log-normal distribution.
  • a_omega: First parameter of prior distribution for omega, which is log-normal distribution.
  • b_omega: Second parameter of prior distribution for omega, which is log-normal distribution.
  • l_lambda: First parameter of prior distribution for lambda, which is uniform distribution.
  • u_lambda: Second parameter of prior distribution for lambda, which is uniform distribution.
  • a_theta: First parameter of prior distribution for theta, which is log-normal distribution.
  • b_theta: Second parameter of prior distribution for theta, which is log-normal distribution.
  • iter: Number of iterations of MCMC.
  • plot.step: Step for the graph plotting. If the value is greater than iter parameter value, no plots will be visible.
  • save.step: Step for the parameters saving. The file must be specified or has to be set to larger than iter.
  • filename: The name of the output RDS file

Returns

The output is an estimated MCMC chain of parameters, centers and connections.

Examples

library(spatstat) kappa = 10 omega = .1 lambda= .5 theta = 10 X = rgtp(kappa, omega, lambda, theta, win = owin(c(0, 1), c(0, 1))) plot(X$X) plot(X$C) a_kappa = 4 b_kappa = 1 x <- seq(0, 100, length = 100) hx <- dlnorm(x, a_kappa, b_kappa) plot(x, hx, type = "l", lty = 1, xlab = "x value", ylab = "Density", main = "Prior") a_omega = -3 b_omega = 1 x <- seq(0, 1, length = 100) hx <- dlnorm(x, a_omega, b_omega) plot(x, hx, type = "l", lty = 1, xlab = "x value", ylab = "Density", main = "Prior") l_lambda = -1 u_lambda = 0.99 x <- seq(-1, 1, length = 100) hx <- dunif(x, l_lambda, u_lambda) plot(x, hx, type = "l", lty = 1, xlab = "x value", ylab = "Density", main = "Prior") a_theta = 4 b_theta = 1 x <- seq(0, 100, length = 100) hx <- dlnorm(x, a_theta, b_theta) plot(x, hx, type = "l", lty = 1, xlab = "x value", ylab = "Density", main = "Prior") est = estgtp(X$X, skappa = exp(a_kappa + ((b_kappa ^ 2) / 2)) / 100, somega = exp(a_omega + ((b_omega ^ 2) / 2)) / 100, dlambda = 0.01, stheta = exp(a_theta + ((b_theta ^ 2) / 2)) / 100, smove = 0.1, a_kappa = a_kappa, b_kappa = b_kappa, a_omega = a_omega, b_omega = b_omega, l_lambda = l_lambda, u_lambda = u_lambda, a_theta = a_theta, b_theta = b_theta, iter = 50, plot.step = 50, save.step = 1e9, filename = "")